
 

 

 

 

MicrosoftTraining.net 

 

Excel VBA 
Introduction 

 

Courses never 

Cancelled 

24 Months Online 

Support 

 

12+ Months 

Schedule 

UK Wide 

Delivery 

 

  

Accredited Learning Provider 
Certified Silver Partner 



 

 

Welcome to your Excel VBA Introduction training course 

 Record macros 

 The  visual basic Editor 

 Understand objects (Object oriented programming) 

 Control structure using decision code (If Then Else & Select Case) 

 Understand and use loops (Do, For Next, For Each) 

 Test code and debugging tools 

 

 

Microsoft Office Training Series 

MicrosoftTraining.net/Feedback 

Microsoft Technical Series 

Professional Development Series 



 

www.MicrosoftTraining.net  0207 987 
3777  i 

 

Contents 

Unit 1 Recording Macros 1 

Recording and Running Macros 1 

Running a Macro 2 

Adding a Macro/Procedure to the Quick Access Toolbar 4 

The Personal Macro Workbook 5 

Unit 2 Working with the Visual Basic Editor  6 

Introducing Visual Basic for Applications 6 

Editing Macros in Visual Basic Editor 8 

Understanding the Development Environment 9 

Unit 3 Developing with Procedures  13 

Understanding and Creating Modules 13 

Defining Procedures 15 

Creating a Sub-Procedure 17 

Working Using the Code Editor 21 

Unit 4 Managing Program Execution 27 

Defining Control-Of-Flow structures 27 

Using the If...End If Decision Structures 31 

Using the Select Case...End Select Structure 35 

Using the Do...Loop Structure 38 

Using The For...Next Structure 40 

Using the For Each...Next Structure 40 

Using the While Wend loop 41 

Guidelines for Use Of Control-Of-Flow Structures 42 

Using loops to easily make changes across multiple worksheets 43 

Loop Through Excel Worksheets 43 

The For Each loop 43 

The For Next loop 43 

The Do loop 44 

Loop Workbooks 44 

The For Each loop 44 

The For Next loop 44 

The Do loop 45 

Loop workbooks & worksheets 45 

The For Each loop 45 

The For Next loop 46 

The Do loop 46 



 

2 0207 987 3777  www.MicrosoftTraining.net 
 

Unit 5 Debugging the Code 47 

Understanding Errors 47 

Using Debugging Tools 51 

Identifying the Value of Expressions 53 

How to Step Through Code 54 

Working with Break Mode during Run Mode 56 

Using the Immediate Window 58 

Unit 6 Understanding Objects 60 

Defining Objects 60 

Examining the Excel Object Hierarchy 62 

Defining Collections 66 

Working with Properties 72 

The With Statement 72 

Working With Methods 74 

Event Procedures 76 

Excel VBA – Quick Reference Guide 78 

 



 

www.MicrosoftTraining.net 0207 987 3777 1 
 

Unit 1 Recording Macros 

In this unit you will learn how to: 

 Record a macro (absolute & relative macros) 

 Run a macro 

 Execute macros from button & from the quick access toolbar 

 

Recording and Running Macros 
A macro is a series of commands in Visual Basic, also known as a Sub Procedure. 

Macros allow you to automate tedious or complicated tasks, particularly those 

that are prone to error. 

 

You can record a sequence of commands and replay the actions by running the 

macro. Examining the code of a recorded macro can give you insight into how 

Visual Basic works. 

 

Macros can be stored on the current worksheet or made available globally by 

saving them in the Personal.xlsm workbook.  This is a hidden workbook that 

automatically opens when you open Excel. 

Recording a Macro 

  

View Ribbon > Macro Section > Macro > Record Macro 

 

Note: Excel will require the Developer Ribbon to be available for most VBA related 

tasks. 

2007: Office Button > Options > Display > Tick Show Developer 

2010/2013/2016: File Ribbon > Options > Customise Ribbon > Tick Show 

Developer 

 

 

The Record Macro dialog box appears. 



 

2 0207 987 3777  www.MicrosoftTraining.net 
 

 
 Type the macro’s name in the Macro name box (cannot contain spaces) 

 

 Select where the macro is to be stored 

 

 Add a shortcut key, if desired 

 

 Type a description, if desired (this will appear in the VB editor as commented 

code) 

 

 Click OK. 

 

Perform the actions to be recorded. 

 To end recording 

 

 Click Stop button in bottom left of 

Status bar 

 Or from the Developer ribbon 

Running a Macro 
A macro can be run by using a keystroke combination, a menu, a toolbar or the 

Macro dialog box.  This provides a list of all available macros in the open 

workbooks. To open this: 

 

 Developer Ribbon > Code Section > Macros Button 

 

The Macro dialog box appears. 

 



 

www.MicrosoftTraining.net 0207 987 3777 3 
 

 

 

 

 

 

 Select the desired macro 

from the Macro Name list 

 

 Click Run. 

 

 

 

Macros without a workbook name in front indicate that they belong to the 

active workbook. 

 

Click the Step Into button in the Macro dialog box to run the macro one line at 

a time.  Once the VB editor displays, press F8. 

 

Keep pressing F8 to step through the code.  Display both the Excel and VB 

Editor windows in order to see the results of the code execution. 

 

  



 

4 0207 987 3777  www.MicrosoftTraining.net 
 

 

 

Adding a Macro/Procedure to the Quick Access Toolbar 

  

To add the recorded Macro as a button on the Quick Access Toolbar, top left of 

the Excel window follow these steps: 

 

Quick Access Toolbar 

 
 Select the small drop menu button (shown above) 

 

 From the menu select “More Commands”  

 

 This will display the Excel Options dialog 

 

 Click menu called “Choose Commands From” 

 

 Select Macros 

 

 

 

 

 Locate the name of 

the macro and select 

 Click the Add button 

 Click OK 



 

www.MicrosoftTraining.net 0207 987 3777 5 
 

The Personal Macro Workbook 
The personal macro workbook is automatically created by Excel the first time 

you record a macro into it. It is then stored in a trusted location as part of your 

personal profile. It is loaded when Excel is running, therefore macros stored here 

are always available. 

 

 

When to create Personal Macros 

How do you decide whether to store macros in the Personal Macros workbook 

or a particular workbook? 

 

Macros which could be used in any workbook would be better saved into the 

Personal Workbook. For example a macro to create a page setup with a 

particular header and footer could then be run for any workbook. Another 

example might be a macro to change the selected text to upper or proper case. 

 

 

Saving the Personal Macros 

When exiting from Excel you will be given an opportunity to save the Personal 

Macro Workbook.  

 

This will makes it available every time you use Excel. The workbook file is named 

Personal.xlsb. 

 

Editing a Personal Macro 

Personal macros are stored within a hidden workbook which makes them a little 

harder to edit. The easiest way without unhiding the workbook is to switch to 

the Visual Basic Editor (VBE) by pressing Alt+F11.   

 

Assigning Personal Macros to the Toolbar 

Once created it would be convenient to assign Personal macros to the Quick 

Access Toolbar. 

 



 

6 0207 987 3777  www.MicrosoftTraining.net 
 

Unit 2 Working with the Visual Basic Editor  

In this unit you will learn how to: 

 Understand the visual basic editor 

 Navigate the tools 

 Protect your code 

 Understand the personal macro workbook 

 

Introducing Visual Basic for Applications 
Visual Basic for Applications or VBA is a development environment built into the 

Microsoft Office Suite of products. 

 

VBA is an Object Oriented Programming (OOP) language. It works by 

manipulating objects.  In Microsoft Office  the programs are objects.  In Excel 

worksheets, charts and dialog boxes are also objects. 

 

In VBA the object is written first 

 

I’m fixing the Yellow House = .House.Yellow.Fix 

 

 House Yellow Fix 

English .noun .adjective .verb 

 

VBA .object .property .method 

 

When working in VBA tell Excel exactly what to do.  Don’t assume anything. 

 

Some General tips 

Do not hesitate to use the macro recorder to avoid typos in your code. It will 

also allow you to get access to useful code without having to memorise it. 

 

Write your code in lower case letters. If the spelling is RIGHT, the Visual Basic 

Editor will capitalize the necessary letters. If it doesn't.... check your spelling.  

 

All VBA sentences must be on a single line. When you need to write long 

sentences of code and you want to force a line break to make it easier to read 

you must add a space and an underscore at the end of each line and then press 

Return. Here is an example of a single sentence broken into 3 lines: 

 



 

www.MicrosoftTraining.net 0207 987 3777 7 
 

Range("A1:E9").Sort Key:=Range("C2"), Order1:=xlAscending,  _ 

MatchCase:=False, Orientation:=xlTopToBottom, _ 

DataOption1:=xlSortTextAsNumbers 

Flickering Screen 

Running a macro or VBA code may cause the screen to flicker as the monitor is 

the slowest part of the program and cannot keep up with the very fast changes 

taking place.  To switch off the screen until the program is run enter the 

following code line: 

 

Application.ScreenUpdating = False 

Screen comes on automatically on completion of the program. 

CutCopyMode 

After each Paste operation, you should turn off copying: 

ActiveSheet.Paste 

Application.CutCopyMode = False  

DisplayAlerts 

If you don't want Excel to ask you things like "Do you want to delete this file..." 
you can use the following line of code at the beginning of the relevant VBA 
procedure. 

Application.DisplayAlerts = False 

Then at the end make sure you use the following code to reactivate Display 

Alerts. 

Application.DisplayAlerts = True  

Compare Text 
If you try to compare two strings in VBA the system compares the Binary 
information of the strings so that 

 “My Name” Is Not Equal To “my name”. 

 

To make the computer compare the words in the string, rather than the Binary 

you need to enter the code: 

Option Compare Text 

In the Declarations area of the module. 

Quit 
The following line of code closes Excel altogether. 

Application.Quit  



 

8 0207 987 3777  www.MicrosoftTraining.net 
 

Editing Macros in Visual Basic Editor 
When you record a macro, the recorded instructions are inserted into a 

Procedure whose beginning and end are denoted with the key words Sub and 

End Sub.  This is stored within a Module.  A module can contain many 

procedures. 

 

Code generated when a macro is recorded can be modified to provide a more 

customised function.  To do this: 

 

 Developer Ribbon > Code Section > Macros 

 Select the desired macro from the Macro Name list 

 Click Edit 

 

The Visual Basic Editor appears. 

 

 

 Make the desired changes 

 Save the macro 

 Close the Visual Basic Editor window. 

 

Important Note 

You can usually figure out how to code any action in Excel by recording it in a 

macro and viewing the resulting macro code. 



 

www.MicrosoftTraining.net 0207 987 3777 9 
 

Understanding the Development Environment 
 

 

 

Title bar, Menu bar 

and Standard 

toolbar 

The centre of the Visual basic environment.  The 

menu bar and toolbar can be hidden of customized.  

Closing this window closes the program. 

 

Project Explorer Provides an organized view of the files and 

components belonging to the project.   

If hidden the Project Explorer can be displayed by 

pressing Ctrl + R 

 

Properties Window Provides a way to change attributes of forms and 

controls (e.g. name, colour, etc). If hidden press F4 

to display. 

 

Code Window Used to edit the Visual basic code. Press F7 and it 

will open an object selected in Project Explorer.  

Close the window with the Close button that 

appears on the menu bar. 

 

 

Properties 

Window 

Project 

Explorer 

Code 

window 

Close 

button 



 

10 0207 987 3777  www.MicrosoftTraining.net 
 

Protect/Lock Excel VBA Code 

When we write VBA code it is often desirable to have the VBA Macro code not 

visible to end-users. This is to protect your intellectual property and/or stop 

users messing about with your code. 

 

To protect your code, from within the Visual Basic Editor 

 

 

 Open the Tools Menu 
 

 Select VBA Project 

Properties 
 

The Project Properties dialog 

box appears. 
 

 Click the Protection page tab 
 

 Check "Lock project for 

viewing" 
 

 Enter your password and 

again to confirm it. 
 

 Click OK 

 

After doing this you must Save and Close the Workbook for the protection to 

take effect. 

 

The safest password to use is one that uses a combination of upper, lower case 

text and numbers.  Be sure not to forget it. 

 
 

 

Notes 

 

 

 

 

 

 



 

www.MicrosoftTraining.net 0207 987 3777 11 
 

 

 



 

12 0207 987 3777  www.MicrosoftTraining.net 
 

Using Help 

If the Visual Basic Help files are installed, by pressing F1, a help screen displays 

explaining the feature that is currently active: 

 

 

Alternatively use the Ask a Question box on the menu bar to as a quick way to 

find help on a topic. 

 

 

Closing the Visual Basic Editor 

 

To close the Visual Basic Editor use one of the following: 

 

 

 Open the File menu; select 

Close and Return to 

Microsoft Excel 

 

OR 

 

 Press Alt + Q 

 

OR 

 

 Click  Close in the title bar. 

 

 

 



 

www.MicrosoftTraining.net 0207 987 3777 13 
 

Unit 3 Developing with Procedures 

In this unit you will learn how to: 

 Understand and create modules 

 Navigate the tools 

 Protect your code 

 Understand the personal macro workbook 

 

Procedure is a term that refers to a unit of code created to perform a specific 

task.  In Excel, procedures are stored in objects called Modules. 

 

In this unit we will look at both Modules and Procedures. 

Understanding and Creating Modules 
Standard modules can be used to store procedures that are available to all forms, 

worksheets and other modules.  These procedures are usually generic and can be 

called by another procedure while the workbook is open. 

 

Within a project you can create as many standard modules as required.  You 

should store related procedures together within the same module. 

 

Standard modules are also used to declare global variables and constants.  To 

create a standard module in the VB Editor: 

 



 

14 0207 987 3777  www.MicrosoftTraining.net 
 

 

 

 Open the Insert menu 

 

 Select Module. 

 

 

 

A new Module appears: 

 

 

 Display the Properties window if necessary 

 In the Properties window change the name of the module 

New 

Module 

Rename 

Module 



 

www.MicrosoftTraining.net 0207 987 3777 15 
 

Defining Procedures 
A procedure is a named set of instructions that does something within the 

application. 

 

To execute the code in a procedure you refer to it by name from within another 

procedure.  This is known as Calling a procedure.  When a procedure has finished 

executing it returns control to the procedure from which it was called. 

 

There are two general types of procedures: 

 

Sub procedures perform a task and return control to the calling 

procedure 

 

Function procedures perform a task and return a value, as well as control, 

to the calling procedure 

 

 

If you require 10 stages to solve a problem write 10 sub procedures.  It is easier 

to find errors in smaller procedures than in a large one. 

 

The procedures can then be called, in order, from another procedure. 

Naming Procedures 

There are rules and conventions that must be followed when naming procedures 

in Visual Basic. 

 

While rules must be followed or an error will result, conventions are there as a 

guideline to make your code easier to follow and understand. 

 



 

16 0207 987 3777  www.MicrosoftTraining.net 
 

The following rules must be adhered to when naming procedures: 

 

 Maximum length of the name is 255 characters 

 

 The first character must be a letter 

 

 Must be unique within a given module 

 

 Cannot contain spaces or any of these characters: . , @ & $ # ( ) ! 
 

 



 

www.MicrosoftTraining.net 0207 987 3777 17 
 

You should consider these naming conventions when naming procedures: 

 

 As procedures carry out actions, begin names with a verb 

 

 Use the proper case for the word within the procedure name 

 

 If procedures are related try and place the words that vary at the end of the 

name 

 

Following these conventions, here is an example of procedure names: 

 

PrintClientList 

 

GetDateStart 

 

GetDateFinish 

 

Creating a Sub-Procedure 
Most Excel tasks can be automated by creating procedures.  This can be done by 

either recording a macro or entering the code directly into the VB Editor’s Code 

window. 

 

Sub procedures have the following syntax: 

 

[Public/Private] Sub ProcedureName ([argument list]) 

 

Statement block 

 

End Sub 



 

18 0207 987 3777  www.MicrosoftTraining.net 
 

 

Public indicates procedure can be called from within other modules.  It is the 

default setting 

 

Private indicates the procedure is only available to other procedures in the same 

module. 

 

The Sub…End Sub structure can be typed directly into the code window or 

inserted using the Add Procedure dialog box. 

 

To create a sub procedure: 

 Create or display the module to contain the new sub procedure 

 Click in the Code window 

 Type in the Sub procedure using the relevant syntax 

Type in the word Sub, followed by a space and the Procedure name 

Press Enter and VB inserts the parenthesis after the name and the End Sub 

line. 

 

OR 

 

 Use Add Procedure.



 

www.MicrosoftTraining.net 0207 987 3777 19 
 

To display the Add Procedure dialog box: 

 

 

 

 

 Open the Insert menu 

 

 Select Procedure. 

 

 

 

The Add Procedure dialog box appears: 

 

 Type the name of the procedure in 

the Name text box 

 

 Select Sub under Type, if necessary 

 

 Make the desired selection under 

Scope 

 

 Click OK. 

 

 

 

Below is an example of a basic sub procedure: 

 

 

 
 

 



 

20 0207 987 3777  www.MicrosoftTraining.net 
 

Notes 

 

 

 

 

 

 

 

Auto Quick Info is a feature of the Visual Basic that displays a syntax box when 

you type a procedure or function name. 

 

The example below shows the tip for the Message Box function: 

 

Arguments in square brackets are optional. 

 

Values passed to procedures are sometimes referred to as parameters. 

 

Notes 

 

 

 



 

www.MicrosoftTraining.net 0207 987 3777 21 
 

Working Using the Code Editor 
The Code editor window is used to edit Visual Basic code.  The two drop down 

lists can be used to display different procedures within a standard module or 

objects’ event procedures within a class module. 

 

Below is an illustration of the code window: 

 

 

Object List 

 

Displays a list of objects contained in the current module. 

Procedure List Displays a list of general procedures in the current module 

when General is selected in the Object list. 

When an object is selected in the Object list it displays a 

list of events associated with the object. 

 

Procedure View: 

Displays procedures 

one at a time. 

Procedure list Object list 
Procedure 

separator 

Full Module View: 

Displays all the procedures in the 

module one after the other 



 

22 0207 987 3777  www.MicrosoftTraining.net 
 

 

 

 

Notes 

 

 

 



 

www.MicrosoftTraining.net 0207 987 3777 23 
 

Setting Code Editor Options 

The settings for the Code Editor can be changed. To do this: 

 

 

 Open the Tools menu in the VB Editor 

 

 Select Options. 

 

 

 

The Options dialog box appears: 

 

The following are explanations of the Code Setting selections: 

 

Auto Syntax 

Check 

Automatically displays a Help message when a syntax error 

is detected.  Message appears when you move off the code 

line containing the error 

 

Require Variable 

Declaration 

Adds the line Option Explicit to all newly created modules, 

requiring all variables to be explicitly declared before they 

are used in a statement. 

 



 

24 0207 987 3777  www.MicrosoftTraining.net 
 

Auto List 

Members 

Displays a list box under your insertion point after you type 

an identifiable object.  The list shows all members of the 

object class.  An item selected from the list can be inserted 

into your code by pressing the Tab key 

 

Auto Quick Info Displays a syntax box showing a list of arguments when a 

method, procedure or function name is typed 

 

Auto Data Tips Displays the value of a variable when you point to it with a 

mouse during break mode. Useful for debugging. 

 

Auto Indent Indent the specified amount when Tab is pressed and 

indents all subsequent lines at the same level. 



 

www.MicrosoftTraining.net 0207 987 3777 25 
 

The Windows Settings selections are explained below: 

 

Drag-and-Drop Text Editing Allows you to drag and drop code around the 

Code window and into other windows like the 

Immediate window. 

 

Default to Full Module View Displays all module procedures in one list with 

optional separator lines between each procedure. 

The alternative is to show one procedure at a 

time, as selected through the Procedure list. 

 

Procedure Separator Displays a grey separator line between 

procedures if Module view is selected 

 

Editing Guidelines 

Below are some useful guidelines to follow when editing code: 

 If a statement is too long carry it over to the next line by typing a space and 

underscore ( _ ) character at the end of the line.  This also works for 

comments.   

 

Strings that are continued require a closing quote, an ampersand (&), and a 

space before the underscore. This is called Command Line Continuation. 

 

 Indent text within control structures for readability. To do this: 

 Select one or more lines 

 Press the Tab key  OR 

 Press Shift + Tab to remove the indent. 

 

 Complete statements by pressing Enter or by moving focus off the code line 

by clicking somewhere else with the mouse or pressing an arrow key. 

 

When focus is moved off the code line, the code formatter automatically 

places key words in the proper case, adjusts spacing, adds punctuation and 

standardizes variable capitalization. 

 



 

26 0207 987 3777  www.MicrosoftTraining.net 
 

It is also a good idea to comment your code to document what is happening in 

your project. Good practice is to comment what is not obvious. 

 

Start the line with an apostrophe ( ‘ ) or by typing the key word Rem (for remark).  

When using an apostrophe to create a comment, you can place the comment at 

the end of a line containing a code statement without causing a syntax error. 

 

Notes 

 

 

 



 

www.MicrosoftTraining.net 0207 987 3777 27 
 

  

Unit 4 Managing Program Execution 

In this unit you will learn how to: 

 Understand how Excel execute the code 

 Use bolean expressions 

 Use decision code (If & Select Case) 

 Loop through objects 

 

Defining Control-Of-Flow structures 
When a procedure runs, the code executes from top to bottom in the order that 

it appears.  Only the simplest of programs execute in this manner.  Most 

programs incorporate logic to control which lines of code to execute. 

 

The Control-Of-Flow structures described below provide this logic: 

 

 

Sequential 

 

Each line of code is executed in order from top to bottom. 

 

Unconditional 

Branching 

A statement that directs the flow of program execution to 

another location in the program without condition.  Calling 

a Function, a Sub or using the GoTo statement are 

examples of unconditional branching 

 

Conditional 

Branching 

The code to be executed is based on the outcome of a 

Boolean expression.  Decision structures like If and Select 

Case are used to implement conditional branching. 

 

Looping A block of code executed repeatedly as long as a certain 

condition exists.  The For…Next and the Do..Loop are 

examples of looping structures 

 

Halt 

Statements 

Commands used to stop code execution.  The Stop 

command stops execution but retains variables in memory.  

The End command terminates the application. 

 

 



 

28 0207 987 3777  www.MicrosoftTraining.net 
 

Using Boolean Expressions 

A Boolean expression returns a True or False value.  Many Boolean expressions 

take the form of two expressions either side of a comparison operator.  If the 

result is true the condition is met and control is passed to the code to be 

executed. 

 

Here are some examples of Boolean expressions: 

 

 

Firstname = “Alan” 

 

UnitPrice > 1.60 

 

OrderAmount < 500 

 

 



 

www.MicrosoftTraining.net 0207 987 3777 29 
 

The following comparison operators are used in Boolean expressions: 

 

< Less than 

<= Less than or equal to 

> Greater than 

>= Greater than or equal to 

= Equal to 

<> Not equal to 

Is Compares object variables 

Like Compares string expressions 

 

When testing for more than one condition Boolean expressions can be joined 

with a Logical Operator. 

 

The following is a list of Logical Operators: 

 

And 

 

Each expression must be True for the condition to be true. 

 

 

Or 

 

One of the expressions must be True for the condition to be 

true. 

 

 

Not 

 

The expression must be False for the condition to be true. 

 

 

The following are examples of multiple conditions joined by logical operator: 

 

 

UnitPrice > 1.60 AND OrderAmount > 1000 

 

DateJoined <= 2004 OR DeptName = “Sales” 

 

 

A null expression will be treated as a false expression. 
 

Notes 

 



 

30 0207 987 3777  www.MicrosoftTraining.net 
 

 

 

 

 



 

www.MicrosoftTraining.net 0207 987 3777 31 
 

Using the If...End If Decision Structures 
If…End If is used to execute one or more statements depending upon a text 

condition.  There are four forms of the If construct. 

 

The first contains the condition and statement to be executed in the same line: 

 

 

If <condition> Then <statement> 

 

If OrderAmount >1000 Then Discount = “Yes” 

 

 

The block form is used when several statements are to be executed based on 

result of the test condition: 

 

 

If <condition> Then 

<statement block> 

End If 

 

If Country = “England” Then 

Account = “Domestic” 

TransportCost = 10.00 

End If 

 

 

Like the If…Then structure the If…Then…Else structure passes control to the 

statement block that follows the Then keyword when the condition is True and 

passes control to the statement block that follows the Else keyword when the 

condition is False. 

 

 

If <condition> Then 



 

32 0207 987 3777  www.MicrosoftTraining.net 
 

<statement block> 

Else 

<statement block> 

End If 

 

If Country = “England” Then 

Account = “Domestic” 

TransportCost = 10.00 

Else 

Account = “Foreign” 

TransportCost = 40.00 

 

End If 

 

 



 

www.MicrosoftTraining.net 0207 987 3777 33 
 

By modifying the basic structure and inserting ElseIf statements, an 

If…Then…Else block that tests multiple conditions is created.  The conditions 

are tested in the order of appearance until a condition is true. 

 

If a true condition is found, the statement block following the condition is 

performed; execution then continues with the first line of code following the 

End If statement.  If no condition is true, execution will continue with the End If 

statement.  An optional Else clause at the end of the block will catch the cases 

that do not meet any of the conditions. 

 

 

If <condition_1> Then 

<statementBlock1> 

[ElseIf <condition_2> Then 

[<StatementBlock2>]] 

[ElseIf <condition_3> Then 

[<StatementBlock3>]] 

[ElseIf <condition_N> Then 

[<StatementBlockN>]] 

End If 

 

If Country = “England” Then 

Account = “Domestic” 

TransportCost = 10.00 

ElseIf Country = “Wales” Then 

Account = “Domestic” 

TransportCost = 20.00 

ElseIf Country = “Scotland” Then 

Account = “Domestic” 

TransportCost = 25.00 

ElseIf Country = “Northern Ireland” Then 

Account = “Domestic” 



 

34 0207 987 3777  www.MicrosoftTraining.net 
 

TransportCost = 30.00 

Else 

Account = “Foreign” 

TransportCost = 40.00 

 

End If 

 

 



 

www.MicrosoftTraining.net 0207 987 3777 35 
 

Using the Select Case...End Select Structure 
The Select Case statement is often used in place of the complex If statement.  

The advantage of using this style is that your code will be more readable and 

efficient.  The downside is that it is only useful if compared against just one 

value. 

 

The Select Case structure contains the test expression in the first line of the 

block.  Each Case statement in the structure then compares against the test 

expression. 

 

The syntax of the Select Case structure, followed by two examples is shown 

below: 

 

 

 

Notes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

36 0207 987 3777  www.MicrosoftTraining.net 
 

 

 

 

Select Case <TestExpression> 

Case <Expression_1> 

<StatementBlock1> 

Case <Expression_2> 

<StatementBlock2> 

Case <Expression_3> 

<StatementBlock3> 

Case <Expression_N> 

<StatementBlockN> 

End Select 

 

Select Case Country 

Case “England”  

Account = “Domestic” 

TransportCost = 10.00 

Case “Wales”  

Account = “Domestic” 

TransportCost = 20.00 

Case “Scotland”  

Account = “Domestic” 

TransportCost = 25.00 

Case “Northern Ireland”  

Account = “Domestic” 

TransportCost = 30.00 

Case Else 

Account = “Foreign” 



 

www.MicrosoftTraining.net 0207 987 3777 37 
 

TransportCost = 40.00 

End Select 

 

Select Case TestScore 

Case 0 To 50 

Result = “Below Average” 

Case 51 To 70 

Result = “Good” 

Case Is > 70 

Result = “Excellent” 

Case Else 

Result = “Irregular Test Score” 

End Select 

 

 



 

38 0207 987 3777  www.MicrosoftTraining.net 
 

Using the Do...Loop Structure 
The Do…Loop structure controls the repetitive execution of the code based 

upon a test of a condition.  There are two variations of the structure: Do While 

and Do Until. 

 

The Do While structure executes the code as long as the condition is true. 

The Do Until structure executes the code up to the point where the condition 

becomes true or as long as the condition is false.  The condition is any 

expression that can be evaluated to true or false. 

 

The Exit Do is optional and can be used to quit the Do statement and resume 

execution with the statement following the Loop.  Multiple Exit Do statements 

can be placed anywhere within the Loop construct. 

 

The following syntax is used to perform the statement block zero or more times: 

 

 

Do While <condition> 

<statement block> 

[Exit Do] 

Loop 

 

Do Until <condition> 

<statement block> 

[Exit Do] 

Loop 

 

Do While ActiveCell.Value <> “” 

ActiveCell.Value = ActiveCell.Value *1.25 

ActiveCell.Offset(1).Select 

Loop 

 

 

To perform the statement block at least once, use one of the following: 

 

 

Do 



 

www.MicrosoftTraining.net 0207 987 3777 39 
 

<statement block> 

[Exit Do] 

Loop While <condition> 

 

Do 

<statement block> 

[Exit Do] 

Loop Until <condition> 

 

Do 

Count = Count +1 

Loop Until Count = NoStudents 

 



 

40 0207 987 3777  www.MicrosoftTraining.net 
 

Using The For...Next Structure 
The For…Next structure executes a block of statements a specific number of 

times using a counter that increases or decreases values.  Beginning with the 

start value, the counter is increased or decreased by the increment.  The default 

increment is 1.  Specify an increment of -1 to count backwards. 

 

The Exit For statement is optional and can be used to quit the For construct 

and resume execution with the statement following the Next. 

 

Below is the syntax of the For…Next statement: 

 

 

For <counter> = <start> To <end> [Step <increment> 

<statement block> 

[Exit For] 

Next [<counter>] 

 

Dim MyIndex as Integer 

For MyIndex = 1 To NoRows 

Cells (MyIndex,4).Select 

Total = Total + Cells (NoRows,4).Value 

Next MyIndex 

 

Using the For Each...Next Structure 
The For Each…Next structure is used primarily to loop through a collection of 

objects.  With each loop it stores a reference to a given object within the 

collection to a variable.  The variable can be used by the code to access the 

object’s properties.  By default it will loop through ALL the objects in a 

collection. 

 

The Exit For statement is optional and can be used to quit the For Each 

construct and resume execution with the statement following the Next. 

 

Below is the syntax of the For Each…Next statement: 

 

 

For Each <element> in <CollectionReference> 

<statement block> 

[Exit For] 

Next [<element>] 



 

www.MicrosoftTraining.net 0207 987 3777 41 
 

 

Dim BookVar As Workbook 

 

For Each BookVar In Application.Workbooks 

BookVar.Save 

Next BookVar 

 

 
 

Using the While Wend loop 
The While Wend loop is an old loop which are not used much anymore but you can still 

find it, when you Google Excel VBA. 

 

Below is the syntax of the While…Wend statement: 

 

While <condition> 

 

<statement> 

 

Wend 

 

 

An Example could look like this: 

 

While ActiveCell>100 

 

ActiveCell.Offset(0,2).Value=”Value is greater than 100” 

 

Wend 

 
As you can see in the example the loop is working very similar as the Do loop. 



 

42 0207 987 3777  www.MicrosoftTraining.net 
 

Guidelines for Use Of Control-Of-Flow Structures 
Use the following as a guide in choosing the appropriate Decision structure: 

 

Use To 

 

If…Then Or If…Then…End If 

 

Execute one statement based on the 

result of one condition 

 

If…Then…End If Execute a block of statements based on 

the result of one condition 

 

If…Then…Else…End If Execute 1 of 2 statement blocks based 

on the result of one condition 

 

Select Case…End Select Execute 1 of 2 or more statement blocks 

based on 2 or more conditions, with all 

conditions evaluated against 1 

expression. 

 

If…Then…ElseIf…End If Evaluate 1 of 2 or more statement blocks 

based on 2 or more conditions, with 

conditions evaluated against 2 or more 

expressions. 

 

 

Use the following as a guide in choosing the appropriate Looping structure: 

 

Use To 

 

For…Next 

 

Repeat a statement block a specific 

number of times.  The number is known 

or calculated at the beginning of the loop 

and doesn’t change. 

 

For…Each 

 

Repeat a statement block for each 

element in a collection or array. 

 

For…Next Repeat a statement block while working 

through a list when the number of list 

items is known or is calculated 

beforehand. 

 



 

www.MicrosoftTraining.net 0207 987 3777 43 
 

Do…Loop Repeat a statement block while working 

through a list when the number of list 

items is not known or are likely to 

change. 

 

Do…Loop Repeat a statement block while a 

condition is met. 

 

 

Using loops to easily make changes across multiple 
worksheets 

Loops are one of the key tools in Excel VBA when we need to perform tasks through a 
number of objects (cells, worksheets, charts, workbooks etc.) .  Here we will look at how to 
loop through Excel worksheets and workbooks. 

Loop Through Excel Worksheets 

 

Below you will find three examples using different loops but all three will perform exactly the 
same task. 

The For Each loop 

1. An object variable (sh) is used and declared as Worksheet to tell Excel that we 
want store worksheets (the address) in the memory  of our computer (Dim sh As 
Worksheet). 

2. The For Each loop will loop through each worksheet in the active workbook (For 
Each sh In ActiveWorkbook.Sheets). 

3. The code will add 500 in A1 in all sheets in the active workbook. 

Sub LoopSheets() 
Dim sh As Worksheet 
For Each sh In ActiveWorkbook.Sheets 
sh.Range("A1").Value = 500 
Next sh 
End Sub 

The For Next loop 

1. A data variable is used to store a whole number (integer) in the computer's memory 
(Dim iCounter As Integer). 

2. The For Next loop is used to loop through all sheets in the active workbook but the 

loop needs to know how many worksheets there is in the active workbook 
(ActiveWorkbook.Sheets.Count). 

3. The iCounter variable is used to move through the worksheets and the value 500 is 
entered in A1 in all worksheets in the active workbook 
(Sheets(iCounter).Range("A1").Value = 500). 



 

44 0207 987 3777  www.MicrosoftTraining.net 
 

Sub LoopSheetst2() 
Dim iCounter As Integer 
For iCounter = 1 To ActiveWorkbook.Sheets.Count 
Sheets(iCounter).Range("A1").Value = 500 
Next iCounter 
End Sub 

The Do loop 

1. A data variable is used to store a whole number (integer) in the computer's memory 
(Dim iCounter As Integer). 

2. 1 is stored in the iCounter variable (iCounter = 1). 
3. A Do Until loop is used to run until criteria is met in this example until the value in 

the variable iCounter is total number of worksheets in the active workbook plus one 
(Do Until iCounter = ActiveWorkbook.Worksheets.Count + 1). 

Sub LoopSheets3() 
Dim iCounter As Integer 
iCounter = 1 
Do Until iCounter = ActiveWorkbook.Worksheets.Count + 1 
Sheets(iCounter).Range("A!").Value = 500 
iCounter = iCounter + 1 
Loop 
End Sub 

Loop Workbooks 

 

Below you will find three examples using different loops but all three will perform exactly 

the same task but this time the loops will loop through workbooks. 

The For Each loop 

1. An object variable (wBook) is used and declared as Workbook to tell Excel that we 

want store workbooks (the address) in the memory of our computer (Dim WBook 

As Workbook). 

2. The For Each loop will loop through each open workbook  (For Each wBook In 

Workbooks). 

3. The code will add 2 in A2 in sheet 1 in all open workbooks. 

Sub LoopWorkBooks() 

Dim WBook As Workbook 

For Each WBook In Workbooks 

WBook.Sheets(1).Range("A2").Value = 2 

Next WBook 

End Sub 

The For Next loop 

1. A data variable is used to store a whole number (integer) in the computer's memory 

(Dim iWB As Integer). 



 

www.MicrosoftTraining.net 0207 987 3777 45 
 

2. The For Next loop is used to loop through all open workbooks but the loop needs 

to know how many open workbooks we have (Workbooks.Count). 

3. The iWB variable is used to move through the open workbooks and the value 2 is 

entered in A2 in sheet 1 in all open workbooks 

(Workbooks(iWB).Sheets(1).Range("A2").Value = 2). 

Sub LoopWorkBooks2() 

Dim iWB As Integer 

For iWB = 1 To Workbooks.Count 

Workbooks(iWB).Sheets(1).Range("A2").Value = 2 

Next iWB 

End Sub 

The Do loop 

1. A data variable is used to store a whole number (integer) in the computer's memory 

(Dim iCounter As Integer). 

2. 1 is stored in the iCounter variable (iCounter = 1). 

3. A Do Until loop is used to run until the criteria is met in this example until the value 

in the variable iCounter is total number of open workbooks plus one (Do Until 

iCounter = Workbooks.Count + 1). 

Sub LoopWorkBooks3() 

Dim iCounter As Integer 

iCounter = 1 

Do Until iCounter = Workbooks.Count + 1 

Workbooks(iCounter).Sheets(1).Range("A2").Value = 2 

iCounter = iCounter + 1 

Loop 

End Sub 

Loop workbooks & worksheets 

In the examples below nested loops are looping through workbooks and worksheets and 

again the For Each, For Next and the Do loop are used to do the job. 

The For Each loop 

Exactly as in the examples above in this post variables are used to store the address of the 

workbooks and worksheets in the computers memory (Dim WBook As Workbook & Dim sh 

As Worksheet). A For Each loop is used to run through the workbooks and one to run 

through the worksheets. 

Sub LoopWorkBookSheets() 

Dim WBook As Workbook 

Dim sh As Worksheet 

For Each WBook In Workbooks 

For Each sh In WBook.Worksheets 

sh.Range("a1") = 2 

Next sh 



 

46 0207 987 3777  www.MicrosoftTraining.net 
 

Next WBook 

End Sub 

The For Next loop 

Two For Next loops are needed to run through all worksheets in all open workbooks. Two 

variables are used (counter variables) to loop one workbook at the time and one worksheet. 

Sub LoopWorkBookSheets2() 

Dim iWB As Integer 

Dim iCounter As Integer 

For iWB = 1 To Workbooks.Count 

For iCounter = 1 To Workbooks(iWB).Sheets.Count 

Workbooks(iWB).Sheets(iCounter).Range("b1").Value = 450 

Next iCounter 

Next iWB 

End Sub 

The Do loop 

It takes more coding to run through all worksheets in all open workbooks by using 

the Do loop. Again two loops are needed one for the workbooks and one for the 

worksheets. 

Sub LoopWorkBookSheets3() 

Dim iWorkBookCounter As Integer 

Dim iSheetCounter As Integer 

iWorkBookCounter = 1 

iSheetCounter = 1 

Do Until iWorkBookCounter = Workbooks.Count + 1 

Do Until iSheetCounter = 

Workbooks(iWorkBookCounter).Sheets.Count + 1 

Workbooks(iWorkBookCounter).Sheets(iSheetCounter).Rang

e("c1").Value = 5 

iSheetCounter = iSheetCounter + 1 

Loop 

iWorkBookCounter = iWorkBookCounter + 1 

iSheetCounter = 1 

Loop 

End Sub 

Some people prefer to use the For Each loop for a couple of reasons. The For Each loop is 

a faster loop and normally you need less coding. 

 



 

www.MicrosoftTraining.net 0207 987 3777 47 
 

Unit 5 Debugging the Code  

In this unit you will learn how to: 

 Understand errors 

 Navigate the tools 

 Protect your code 

 Understand the personal macro workbook 

Understanding Errors 
When developing code, problems will always occur. Wrong use of functions, 

overflow and division by zero are some of the things that will cause an error and 

not produce the intended results. 

 

Errors are called Bugs. The process of removing bugs is known as Debugging. 

VBA provides tools to help see how the code is running. 

 

There are three general types of errors: 

 

Syntax Errors 

Syntax errors occur when code is entered incorrectly and is typically discovered 

by the line editor or the compiler. 

 

 Discovered by Line Editor:  When you move off a line of code in the Code 

window, the syntax of the line is checked.  If an error is detected the whole 

line turns red by default indicating the line needs to be changed. 

 

 Discovered by Compiler:  While the line editor checks one line at a time, 

the compiler checks all the lines in each procedure and all declarations 

within the project.  If Option Explicit is set, the compiler also checks that all 

variables are declared and that all objects have references to the correct 

methods, properties and events.  The compiler also checks that all required 



 

48 0207 987 3777  www.MicrosoftTraining.net 
 

statements are present, for example that each If has an End If.  When the 

compiler finds an error it displays a message box describing the error. 

 

Run-Time Errors 

When a program is running and it encounters a line of code that it cannot be 

executed, a run-time error is generated. These errors occur when a certain 

condition exists.  A condition could run fine 10 times but cause an error on the 

11th.  When a run-time error occurs, execution is halted a message box appears 

defining the error. 

 

Logic Errors 

Logic errors create unexpected outcomes when a procedure is executed.  Unlike 

syntax or run-time errors the application is not halted and you are not shown 

the offending line of code.  These errors are more difficult to locate and correct. 

 



 

www.MicrosoftTraining.net 0207 987 3777 49 
 

Minimizing Errors 

Here are a few suggestions to help you minimize or make it easier to find errors 

in your code: 

 

 Add comments to code explaining what a line of code or procedure is meant 

to do.  This is important if other people are going to look at the code. 

 Create meaningful variable names.  Use prefixes to identify data or object 

type. 

 Any time you use division that contains a variable in the denominator, test 

the denominator to ensure that it doesn’t equal zero 

 Force variable declarations with the use of Option Explicit.  A simple 

misspelling of a variable name will lead to a logic error, not a run-time error. 

 Give procedures names that clearly describe what they do. 

 Keep procedures as short as possible, giving it one or two specific tasks to 

carry out. 

 Test procedures with large data sets representing all possible permutations 

of reasonable or unreasonable data.  Make your procedure fail before 

someone else does. 

 
 

 

 

 

Notes 

 

 

 

 

 

 

 

 

 

 

 

 



 

50 0207 987 3777  www.MicrosoftTraining.net 
 

 

 

  



 

www.MicrosoftTraining.net 0207 987 3777 51 
 

Using Debugging Tools 
VBA’s debugging tools are useful for checking and understanding the cause of 

logic and run-time errors in the code. 

 

The toolbar buttons as they appear left to right are explained below: 

 

 

Design Mode 

 

 

Turns design mode off and on. 

 

Run / Continue 

 

Runs code or resumes after a code break 

Break 

 

Stops the execution of a program while it's running 

and switches to Break Mode. 

 

Reset 

 

Clears the execution stack and module level 

variables and resets the project. 

 

Toggle Breakpoint Sets or removes a Break Point at the current line. 

 

Step Into 

 

Executes code one statement at a time. 

 

Step Over 

 

Allows selected ode to be stepped over during 

execution. 

 

Step Out 

 

Executes the remaining lines of a procedure after a 

break 

 

Locals Window 

 

Displays the value of variables and properties during 

code execution 

 

Immediate Window Displays a window where individual lines of code 

can be executed and variables evaluated. 

 

Watch Window 

 

Displays the value of each expression that is added 

to a window. 

 

Quick Watch 

 

Displays the current value of the selected 

expression. 

 



 

52 0207 987 3777  www.MicrosoftTraining.net 
 

Call Stack 

 

Displays all the currently loaded procedures 

 

Debugging is done when the application is suspended (in Break Mode).  

Everything loaded into memory remains in memory and can be evaluated.  A 

program enters Break mode in one of the following ways 

 

 A code statement generates a run-time error 

 A breakpoint is intentionally set on a line of code 

 A Stop statement is entered within the program code. 



 

www.MicrosoftTraining.net 0207 987 3777 53 
 

Identifying the Value of Expressions 
While debugging it is useful to find out the value of variables and expressions 

while your code is executing. 

 

VBA has the Locals Window, Immediate Window, Watch Window and Quick 

Watch, described in Using Debugging Tools on the previous page, which can 

be used to find the values of expressions 

 

Another quick way of finding out the value of variables and expressions is the 

Auto Data Tip which displays the value of the expression where the mouse is 

pointing. 

Setting Breakpoints 

Setting breakpoints allows you to identify the location where you want your 

program to enter into break mode.  The program runs to the line of code and 

stops.  The code window displays and the line of code where the break point is 

set is highlighted. 

 

When the code is halted, the value of a variable or expression can be checked 

by holding the mouse pointer over the expression or in the immediate window. 

 

To set a breakpoint open the code window and select the desired procedure: 

 

 

 

 Position the insert point 

on the desired line of 

code 
 

 Set the breakpoint by 

clicking Toggle 

Breakpoint on the 

Debug toolbar 
 

OR 
 

 Open the Debug menu 

and select Toggle 

Breakpoint 
 

OR 
 

 Click in the grey area to 

the left of the line of 

code 

 



 

54 0207 987 3777  www.MicrosoftTraining.net 
 

How to Step Through Code 
The step tools allow you to step one line at a time through the code to see 

exactly which statements in your procedure are being executed. 

 

Step Into 

 

F8 Executes code one statement at a time.  If 

the statement calls another procedure 

execution steps into the called procedure 

and continues to execute one step at a 

time. 

 

Step Over 

 

Shift + F8 Executes code one statement at a time.  If 

the statement calls another procedure the 

procedure is executed without pausing. 

 

Step Out 

 

Ctrl + Shift + 

F8 

Executes the remaining lines of a 

procedure without pausing. 

 

Run To Cursor Ctrl + F8 Runs from the current statement to the 

location of the cursor in the Code window 

if you are stepping through code. 

 

Set next 

Statement 

Ctrl + F9 Runs the statement of your choice rather 

than the next statement. 

 

Call Stack 

 

Ctrl + L Displays all the currently active 

procedures in the application that have 

started but are not completed. 

 

 

 

 

Notes 

 

 

 

 

 



 

www.MicrosoftTraining.net 0207 987 3777 55 
 

 

 

 

 



 

56 0207 987 3777  www.MicrosoftTraining.net 
 

Working with Break Mode during Run Mode 
During code execution the program can enter into Break Mode either 

intentionally or because of a run-time error.  When a run-time error occurs a 

message appears that describes the error. 

 

Click the Debug button to display the code window with the offending line 

highlighted. 

 

If during the program execution you need to intervene, for example it’s stuck in 

an endless loop, you can do so by pressing Ctrl + Break or the Break button in 

the Visual Basic Editor. It is also possible to break pressing Esc twice quickly. 

 

That action will suspend the program execution and produce the following 

message: 
 

Notes 

 

 

 



 

www.MicrosoftTraining.net 0207 987 3777 57 
 

 

 

 



 

58 0207 987 3777  www.MicrosoftTraining.net 
 

Using the Immediate Window 
The Immediate window is a debugging feature of Visual Basic.  It can be used to 

enter commands and evaluate expressions. 

 

Code stored in a sub or function procedure can be executed by calling the 

procedure from the Immediate window. 

 

To open the Immediate window: 

 

 

 

 Open the View menu 

 

 Select Immediate window 

 

OR 

 

 Press Ctrl+G. 

 

 

The Immediate window appears. 

 

To execute a sub procedure: 

 Type SubProcedureName ([Argument list]) 

 Press Enter. 

 

To execute a function and print the return value in the window: 

 Type ? FunctionName ([Argument list]) 

 Press Enter. 

 

To evaluate an expression: 



 

www.MicrosoftTraining.net 0207 987 3777 59 
 

 Type ? Expression 

 Press Enter. 

 

Within the code, especially in loops, use the Debug.Print statement to display 

values in the Immediate window while the code is executing.  The Immediate 

window must be open for this. 

 

 

Notes 

 

 

 



 

60 0207 987 3777  www.MicrosoftTraining.net 
 

Unit 6 Understanding Objects 

In this unit you will learn how to: 

 Understand the visual basic editor 

 Navigate the tools 

 Protect your code 

 Understand the personal macro workbook 

 

An object is an element of an application that can be accessed and manipulated 

using Visual Basic.  Examples of objects in Excel are worksheets, charts and ranges.  

 

Defining Objects 
Objects are defined by lists of Properties, and Methods.  Many also allow for 

custom sub-procedures to be executed in response to Events. 

 

The term Class refers to the general structure of an object.  The class is a template 

that defines the elements that all objects within that class share. 

 

Properties 

Properties are the characteristics of an object.  The data values assigned to 

properties describe a specific instance of an object. 

 

A new workbook in Excel is an instance of a Workbook object, created by you, 

based on the Workbook class.  Properties that define an instance of a Workbook 

object would include its name, path, password, etc. 

 

Methods 



 

www.MicrosoftTraining.net 0207 987 3777 61 
 

Methods represent procedures that perform actions. 

 

Printing a worksheet, saving a workbook selecting a range are all examples of 

actions that can be executed using a method. 

 

Events 

Many objects can recognize and respond to events.  For each event the object 

recognizes you can write a sub procedure that will execute when the specific 

event occurs. 

 

A workbook recognizes the Open event.  Code inserted into the Open event 

procedure of the workbook will run whenever the workbook is opened. 

 

Events may be initiated by users, other objects, or code statements.  Many objects 

are designed to respond to multiple events. 

 

 

 

 

Notes 

 

 

 



 

62 0207 987 3777  www.MicrosoftTraining.net 
 

Examining the Excel Object Hierarchy 
The Excel Object Module is a set of objects that Excel exposes to the development 

environment.  Many objects are contained within other objects.  This indicates a 

hierarchy or parent-child relationship between the objects. 

 

The Application object represents the application itself.  All other objects are 

below it and accessible through it.  It is by referencing these objects, in code, that 

we are able to control Excel. 

 

Objects, their properties and methods are referred to in code using the “dot” 

operator as illustrated below: 

 

 

Application.ActiveWorkbook.SaveAs “Employees.xls” 

 

 

Some objects in Excel are considered global. This means they are on top of the 

hierarchy and can be referenced directly.  The Workbook object is a child object 

of the Excel Application object.  But since the Workbook object is global you don’t 

need to specify the Application object when referring to it. 

 

Therefore the following statements are equal: 

 

 

Application.ActiveWorkbook.SaveAs “Employees.xls 

Parent Object Child Object Method of the Child Object Argument of the Method 



 

www.MicrosoftTraining.net 0207 987 3777 63 
 

 

ActiveWorkbook.SaveAs “Employees.xls” 

 

 

Some objects in the Excel Object model represent a Collection of objects.  A 

collection is a set of objects of the same type. 

 

The Workbooks collection in Excel represents a set of all open workbooks.  An 

item in the collection can be referenced using an index number or its name. 

 

To view the entire Excel Object model: 

 

 Open the Help window 

 Select the Contents tab 

 Expand Programming Information 

 Expand Microsoft Excel Visual basic Reference 

 Select Microsoft Excel Object Model. 

 



 

64 0207 987 3777  www.MicrosoftTraining.net 
 

The following illustration shows a portion of the Excel object hierarchy.  Most 

projects will only use a fraction of the available objects. 



 

www.MicrosoftTraining.net 0207 987 3777 65 
 

 

 



 

66 0207 987 3777  www.MicrosoftTraining.net 
 

Defining Collections 
A collection is a set of similar objects such as all open workbooks, all worksheets 

in a workbook or all charts in a workbook. 

 

Many Excel collections have the following properties: 

Application Refers to the application that contains the collection 

 

Count An integer value representing the number of items in the 

collection. 

 

Item Refers to a specific member of the collection identified by name 

or position.  Item is a method rather than a property 

 

Parent Refers to the object containing the collection 

 

Some collections provide methods similar to the following: 

Add Allows you to add items to a collection 

 

Delete Allows you to remove an item from the collection by identifying 

it by name or position. 

Referencing Objects in a Collection 

A large part of programming is referencing the desired object, and then 

manipulating the object by changing its properties or using its methods.  To 

reference an object you need to identify the collection in which it’s contained. 

 

The following syntax references an object in a collection by using its position.  

Since the Item property is the default property of a collection there is no need to 

include it in the syntax. 

 



 

www.MicrosoftTraining.net 0207 987 3777 67 
 

 

CollectionName(Object Index Number) 

 

Workbooks.Item(1) 

 

Workbooks(1) 

 

Charts(IntCount) 

 

 

 

 

Notes 

 

 

 

 

  



 

68 0207 987 3777  www.MicrosoftTraining.net 
 

The following syntax refers to an object by using the object name.  Again the Item 

property is not necessary: 

 

 

CollectionName(ObjectName) 

 

Workbooks(“Employees”) 

 

Worksheets(“Purchases By Month”) 

 

Sheets(“Total Sales”) 

 

Charts(“Profits 2006”) 

 

 

Using the Object Browser 

The Object Browser is used to examine the hierarchy and contents of the various 

classes and modules. 

 

The Object Browser is often the best tool to use when you are searching for 

information about an object such as: 

 Does an object have a certain property, method or event 

 What arguments are required by a given method 

 Where does an object fit in the hierarchy 

 

To access the Object Browser: 

In the Visual Basic Editor, do one of the following: 

 



 

www.MicrosoftTraining.net 0207 987 3777 69 
 

 Open the View menu 

 Select Object Browser  OR 

 

 Press F2  OR 

 

 Click  the Object Browser icon. 

 
 

Notes 

 

 

 

 

 

 

 

  



 

70 0207 987 3777  www.MicrosoftTraining.net 
 

The Object Browser dialog box appears. 

 

 

The following icons and terms are used in the Object Browser: 

 

 
Class Indicates a Class (Eg Workbook, Worksheet, Range, Cells) 

 

Property Is a value representing an attribute of a class (Eg. Name, 

Value) 

 

Method Is a procedure that perform actions (Eg. Copy, Print Out, 

Delete) 

 
Event Indicates an event which the class generates (Eg Click, 

Activate) 

 

Constant Is a variable with a permanent value assigned to it (Eg vbYes) 

 

Enum Is a set of constants 

Indicates the 

library or project 

for which objects 

are displayed 

Create a search 

by typing search 

criteria here 

List of classes 

and objects 

The Details 

section provides 

descriptive 

information for 

the selected 

class or member 

List of the 

members of 

the selected 

class or object. 



 

www.MicrosoftTraining.net 0207 987 3777 71 
 

 

Module Is a standard module 

 

To search for an object in the Object Bowser: 

 

 Type in the search criteria in the Search Text box 

 Click  

 

To close the Search pane: 

 

 Click  

 



 

72 0207 987 3777  www.MicrosoftTraining.net 
 

Working with Properties 
Most objects in Excel have an associated set of properties.  During execution, 

code can read property values and in some cases, change them as well. 

 

The syntax to read an object’s property is as follows: 

 

 

ObjectReference.PropertyName 

 

ActiveWorkbook.Name 

 

 

The syntax to change an object’s property is as follows: 

 

 

ObjectReference.PropertyName = expression 

 

ActiveWorkbook.Name = “Quarterly Sales 2006” 

 

 

The With Statement 
The With statement can be used to work with several properties or methods 

belonging to a single object without having to type the object reference on each 

line. 

 

The With statement helps optimize the code because too many “dots” in the 

code slows down execution. 



 

www.MicrosoftTraining.net 0207 987 3777 73 
 

 

The syntax for the With statement is as follows: 

 

 

With ObjectName 

<Statement> 

End With 

 

With ActiveWorkbook 

 .PrintOut 

 .Save 

 .Close 

End With 

 

 

You can nest With statements if needed. 

 

Make sure that the code does not jump out of the With block before the End 

With statement executes.  This can lead to unexpected results. 

 



 

74 0207 987 3777  www.MicrosoftTraining.net 
 

Working With Methods 
Many Excel objects provide public Sub and Function procedures that are callable 

from outside the object using references in your VB code.  These procedures are 

called methods, a term that describes actions an object can perform. 

 

Some methods require arguments that must be supplied when using the method. 

 

The syntax to invoke an object method is as follows: 

 

ObjectReference.method [argument] 

 

Workbooks.Open “Sales 2006” 

 

Range(“A1:B20”).Select 

 

Selection.Clear 

 

 

When calling procedures or methods that have arguments you have two choices 

of how to list the argument values to be sent. 

 

Values can be passed by listing them in the same order as the argument list.  This 

is known as a Positional Argument. 

 

Alternatively you can pass values by naming each argument together with the 

value to pass.  This is known as a Named Argument.  When using this method it 



 

www.MicrosoftTraining.net 0207 987 3777 75 
 

is not necessary to match the argument order or insert commas as placeholders 

in the list of optional arguments 

 

The syntax for using named arguments is as follows: 

 

Argumentname:= value 

 

 

The example shows the PrintOut method and its syntax: 

 

Sub 

PrintOut([From],[To],[Copies],[Preview],[ActivePrinter],[PrintToFile],[Collate], 

[PrToFilename]) 

 

 

The statements below show both ways of passing values when calling the 

PrintOut method.  The first passes by Position, the second by Naming: 

 

Workbooks(“Quarterly Sales 2006”).PrintOut (1,2,2,  ,  ,  ,True) 

 

Workbooks(“Quarterly Sales 2006”).PrintOut From:=1, To:=2, Copies:=2, 

Collate:=True 

 



 

76 0207 987 3777  www.MicrosoftTraining.net 
 

Event Procedures 
An event procedure is a sub procedure created to run in response to an event 

associated with an object.  For example run a procedure when a workbook opens. 

 

Event procedure names are created automatically.  They consist of the object, 

followed by an underscore and the event name.  These names cannot be changed.  

Event procedures are stored in the class module associated with the object for 

which they are written. 

 

The syntax of the Activate Event procedure is as follows: 

 

 

Private Sub Worksheet_Activate() 

 

 

Creating An Event Procedure 

 

To create an Event Procedure: 

 



 

www.MicrosoftTraining.net 0207 987 3777 77 
 

 

 

 

 Display the code 

window for the 

appropriate class 

module 
 

 Select the Object 

from the Object 

drop-down list 
 

 Select the event 

from the Procedure 

drop-down list 
 

 Enter the desired 

code in the Event 

Procedure 

 

 

 

 

Notes 

 

 

 

 

Object drop-down 

list 
Procedure drop-down 

list shows all the events 

for the selected object 



 

78 0207 987 3777  www.MicrosoftTraining.net 
 

Excel VBA – Quick Reference Guide 
 

Subject Examples / Notes 

Building 

Blocks 

VBA Terminology Objects (eg Worksheet) 

Property (eg Name) 

Method (eg Close) 

Procedure 
 

Container Objects (eg Workbook) 

Collection Objects (eg Worksheets) 
 

Type “Microsoft Excel Objects” in VBE Help 

to get the Excel object Hierarchy 

 Visual Basic Editor 

(VBE) 

The Projects window 

The Properties window 

The Code window 

Alt-F11 – back and forth between VBE and 

Excel 

 Changing object 

properties 

Using the Properties window 

OR 

Using code: Object.property = newvalue 

 

Eg: ActiveSheet.Name = “New Sheet” 

 Using methods Syntax: object.method 
 

Eg:  ActiveCell.Select 

  ActiveSheet.Protect 

 Coding to react to 

events 

In the code window, select the object from 

the top left drop down menu and the Event 

from the top right drop down menu Eg:  
 

Private Sub Worksheet_Activate() 
 

End Sub 

 Msgbox Msgbox(“This is my message”) 
 

vbCrLf (Carriage return and Linefeed) 
 

Allows text displayed on a MsgBox to 

appear on multiple lines 



 

www.MicrosoftTraining.net 0207 987 3777 79 
 

 Adding Buttons To toolbar (right click on toolbar and 

choose Customise) 

To worksheet (display Forms or Visual Basic 

toolbars) 

 Object Browser In VBE, select View / Object Browser to 

explore the ‘library’ of VBA code 

 

 

Subject Examples / Notes 

Dealing 

with Data 

Data Types Byte, Boolean, Integer, Long, Single, 

Double, String, Date, Currency. .Also Variant 

and Object 
 

Type “Data Type Summary” in VBE Help to 

get the sizes and ranges for all data types 

 Variables Declaring variables: 

 Implicitly by just using them 

 Explicitly (Dim variable as type) 
 

Initialising (i.e. giving a variable a value): 
 UserName = “My Name” 

 Deptnumber = 234 

 Scope Procedure Level scope: 
 

Private Sub Worksheet_Activate() 

Dim MyVariable As String 
 

    MyVariable = "Jonathan" 

 

End Sub 
 

Module Level scope: 
 

Option Explicit 

Dim MyVariable As String 

Private Sub Worksheet_Activate() 

 

    MyVariable = "Jonathan" 

 

End Sub 
 

Public scope: 
 

Option Explicit 

Public MyVariable As String 



 

80 0207 987 3777  www.MicrosoftTraining.net 
 

Private Sub Worksheet_Activate() 

 

    MyVariable = "Jonathan" 

 
End Sub 

 Modules Insert menu to insert new module 

 Procedures Add menu to add new procedure, or type 

it: 
 

Sub MyProceture 
 

End Sub 

 Calling Procedures  Call MyProcedure  

 

Subject Examples / Notes 

Controlling 

Program 

Flow 

Decision Structures If  X = Y Then 

 

Elseif  X = Z Then 

 

Else 

 

End If 

  Select Case username 

 

 Case “Liz” 

 

 Case “Jonathan” 

 

End Select 

 Loop Structures Fixed Iterations 

 

For ThisCount = 1 to 10 

 

Next ThisCount 

  Variable Iterations 

 
 For Each SheetVar In Worksheets 

 (for Collections) 

 

 Next 

 

 Do While / Until  X = Y 

 

 Loop 



 

www.MicrosoftTraining.net 0207 987 3777 81 
 

  



 

82 0207 987 3777  www.MicrosoftTraining.net 
 

Subject Examples / Notes 

More User 

Interaction 

Creating a Custom 

User Form 

In VBE, select Insert and UserForm 

 Adding Controls Use the control toolbox 

 Naming Discipline With Forms and Buttons and other 

controls… 
 

Change the name (use the Properties 

window) – eg: 
 frmMainCommands 

 txtUserName 

 cmdCloseButton 

 Adding code to 

forms/controls 

Double-click on the object 
 

Refer to objects in your code, eg: 
 
 txtUserName.Value = “Some Text” 

 



 

www.MicrosoftTraining.net 0207 987 3777 83 
 

 Responding to 

Events 

In Code Window for forms, use top left 

drop down menu to select a control, 

and top right drop down menu shows 

events 
 

Eg: 
 
 Private Sub cmdEnterName_Click() 

 

Range("E1").Value = 

txtUserName 

 

End Sub 
 

Or 

 
 Private Sub  txtUserName_AfterUpdate() 

 

If txtName.Value>11 And 

txtName.Value<15 Then 

 

    Exit Sub 

 

Else 

    MsgBox ("Not a valid Dept 

number") 

   txtUserName.Value = "" 

         

End If 

End Sub 

 

 

Subject Examples / Notes 

Debugging 

and 

Handling 

Errors  

Types of Error Compile Time 

 

Run Time 

 

Logical 

 

Type  “Trappable Errors” in VBE Help to 

get the list of all trappable errors and 

their descriptions 

 



 

84 0207 987 3777  www.MicrosoftTraining.net 
 

 Debugging Tools On the Debug menu:  

 

 Breakpoint 

 

On the View menu:  

 

 Locals Window  (all 

variables) 

 

 Watch Window (your choice 

of     variables) 

 

 Immediate Window  

 

 On Error  On Error Goto Label 

 

Label:  (must be left justified & 

with   colon) 

 
On Error Resume Next 

 

  



 

www.MicrosoftTraining.net 0207 987 3777 85 
 

Subject Examples / Notes 

Extras Line 

continuation 

Workbooks.Open Filename:= _ 

      "c:\MyDocuments\Excel VBA\Courses2005.xls" 

 MsgBox 

buttons 

Resp = MsgBox(“Do you want to continue?”, _ 

vbYesNoCancel) 

 

If Resp = 6 then 

 Msgbox(“You hit ‘Yes’ didn’t you?”) 

Elseif Resp = 7 then 

 Msgbox(“You hit ‘No’ didn’t you?”) 

Elseif Resp = 2 then 

 Msgbox(“You hit ‘Cancel’ didn’t you?”) 

End If 

 

Type “VB Constants” in VBE Help to view the 

selection of VB Constants available 

 Breaking Out Press Ctrl-Break keys to interrupt code 

manually (or break out of an unending loop) 

 Stop Alternative to Breakpoint 
 

Sub Import() 

 Stop 

End Sub 

 Other useful 

code 

Application.Dialogs(xlDialogOpen).Show 

 

ActiveWindow.ActivateNext 

 

Stop Screen Flickering 
 

Running VBA code may cause the screen to 
flicker.  To switch off the screen until the 
program is run enter the following code line: 
 

Application.ScreenUpdating = False 
 

Screen comes on automatically on completion 
of the program. 
 

To Save a Workbook and close an Application 
 

ActiveWorkbook.Save 
 

ActiveWorkbook.SaveAs “Employees.xls” (Save 
Workbook with different name) 
 

Application.Quit (Quit the application.  Code can 

be used in all Office applications 

 


