

Rev 2-1

MicrosoftTraining.net

Excel VBA
Introduction

Courses never

Cancelled

24 Months

Online Support

12+ Months

Schedule

UK Wide

Delivery

Accredited Learning Provider
Certified Silver Partner

Welcome to Your Excel VBA Introduction Training Course

 Record macros

 The visual basic Editor

 Understand objects (Object oriented programming)

 Control structure using decision code (If Then Else & Select Case)

 Understand and use loops (Do, For Next, For Each)

 Test code and debugging tools

www.MicrosoftTraining.net 0207 987 3777 i

Contents

Unit 1 Recording Macros ... 1

Recording and Running Macros .. 1

Recording a Macro .. 1

Running a Macro ... 3

Adding a Macro/Procedure to the Quick Access Toolbar .. 4

The Personal Macro Workbook .. 5

Saving the Personal Macros .. 5

Editing a Personal Macro .. 5

Assigning Personal Macros to the Toolbar .. 5

Unit 2 Working with the Visual Basic Editor .. 6

Introducing Visual Basic for Applications ... 6

Editing Macros in Visual Basic Editor ... 8

Understanding the Development Environment ... 10

Protect/Lock Excel VBA Code .. 11

Using Help .. 12

Unit 3 Developing with Procedures .. 13

Understanding and Creating Modules .. 13

Defining Procedures ... 14

Creating a Sub-Procedure .. 15

Working Using the Code Editor ... 17

Unit 4 Managing Program Execution .. 22

Defining Control-Of-Flow structures.. 22

Using the If...End If Decision Structures .. 24

Using the Select Case...End Select Structure ... 27

Using the Do...Loop Structure ... 30

Using The For...Next Structure .. 31

Using the For Each...Next Structure .. 32

Guidelines for Use Of Control-Of-Flow Structures ... 33

Unit 5 Debugging the Code .. 35

Understanding Errors ... 35

Using Debugging Tools .. 37

Identifying the Value of Expressions .. 38

How to Step Through Code ... 39

Working with Break Mode during Run Mode .. 40

ii 0207 987 3777 www.MicrosoftTraining.net

Using the Immediate Window ... 41

Unit 6 Understanding Objects ... 43

Defining Objects .. 43

Examining the Excel Object Hierarchy... 44

Defining Collections ... 47

Referencing Objects in a Collection ... 47

Using the Object Browser .. 48

Working with Properties ... 50

The With Statement ... 50

Working With Methods .. 51

Event Procedures ... 52

Excel VBA – Quick Reference Guide .. 53

www.MicrosoftTraining.net 0207 987 3777 1

Unit 1 Recording Macros

In this unit you will learn how to:

 Record a macro (absolute & relative macros)

 Run a macro

 Execute macros from button & from the quick access toolbar

Recording and Running Macros
A macro is a series of commands in Visual Basic, also known as a Sub Procedure.

Macros allow you to automate tedious or complicated tasks, particularly those

that are prone to error.

You can record a sequence of commands and replay the actions by running the

macro. Examining the code of a recorded macro can give you insight into how

Visual Basic works.

Macros can be stored on the current worksheet or made available globally by

saving them in the Personal.xlsm workbook. This is a hidden workbook that

automatically opens when you open Excel.

Recording a Macro
 View Ribbon > Macro Section > Macro > Record Macro

Note: Excel will require the Developer Ribbon to be available for most VBA related

tasks.

2007: Office Button > Options > Display > Tick Show Developer

2010/2013/2016: File Ribbon > Options > Customise Ribbon > Tick Show

Developer

The Record Macro dialog box appears.

2 0207 987 3777 www.MicrosoftTraining.net

 Type the macro’s name in the Macro name box (cannot contain spaces)

 Select where the macro is to be stored

 Add a shortcut key, if desired

 Type a description, if desired (this will appear in the VB editor as commented

code)

 Click OK.

Perform the actions to be recorded.

 To end recording

 Click Stop button in bottom left of Status

bar

 Or from the Developer ribbon

www.MicrosoftTraining.net 0207 987 3777 3

Running a Macro
A macro can be run by using a keystroke combination, a menu, a toolbar or the

Macro dialog box. This provides a list of all available macros in the open

workbooks. To open this:

 Developer Ribbon > Code Section > Macros Button

The Macro dialog box appears.

 Click Run.

 Select the desired macro from the Macro Name list

Macros without a workbook name in front indicate that they belong to the active

workbook.

Click the Step Into button in the Macro dialog box to run the macro one line at a

time. Once the VB editor displays, press F8.

Keep pressing F8 to step through the code. Display both the Excel and VB Editor

windows in order to see the results of the code execution.

4 0207 987 3777 www.MicrosoftTraining.net

Adding a Macro/Procedure to the Quick Access Toolbar
 To add the recorded Macro as a button on the Quick Access Toolbar, top left of

the Excel window follow these steps:

Quick Access Toolbar

 Select the small drop menu button (shown above)

 From the menu select “More Commands”

 This will display the Excel Options dialog

 Click menu called “Choose Commands From”

 Select Macros

www.MicrosoftTraining.net 0207 987 3777 5

The Personal Macro Workbook
The personal macro workbook is automatically created by Excel the first time you

record a macro into it. It is then stored in a trusted location as part of your

personal profile. It is loaded when Excel is running, therefore macros stored here

are always available.

When to create Personal Macros

How do you decide whether to store macros in the Personal Macros workbook or

a particular workbook?

Macros which could be used in any workbook would be better saved into the

Personal Workbook. For example a macro to create a page setup with a particular

header and footer could then be run for any workbook. Another example might

be a macro to change the selected text to upper or proper case.

Saving the Personal Macros
When exiting from Excel you will be given an opportunity to save the Personal

Macro Workbook.

This will makes it available every time you use Excel. The workbook file is named

Personal.xlsb.

Editing a Personal Macro
Personal macros are stored within a hidden workbook which makes them a little

harder to edit. The easiest way without unhiding the workbook is to switch to the

Visual Basic Editor (VBE) by pressing Alt+F11.

Assigning Personal Macros to the Toolbar
Once created it would be convenient to assign Personal macros to the Quick

Access Toolbar.

6 0207 987 3777 www.MicrosoftTraining.net

Unit 2 Working with the Visual Basic Editor

In this unit you will learn how to:

 Understand the visual basic editor

 Navigate the tools

 Protect your code

 Understand the personal macro workbook

Introducing Visual Basic for Applications
Visual Basic for Applications or VBA is a development environment built into the

Microsoft Office Suite of products.

VBA is an Object Oriented Programming (OOP) language. It works by

manipulating objects. In Microsoft Office the programs are objects. In Excel

worksheets, charts and dialog boxes are also objects.

In VBA the object is written first

I’m fixing the Yellow House = .House.Yellow.Fix

 House Yellow Fix

English .noun .adjective .verb

VBA .object .property .method

When working in VBA tell Excel exactly what to do. Don’t assume anything.

Some General tips

Do not hesitate to use the macro recorder to avoid typos in your code. It will also

allow you to get access to useful code without having to memorise it.

Write your code in lower case letters. If the spelling is RIGHT, the Visual Basic

Editor will capitalize the necessary letters. If it doesn't.... check your spelling.

www.MicrosoftTraining.net 0207 987 3777 7

All VBA sentences must be on a single line. When you need to write long

sentences of code and you want to force a line break to make it easier to read

you must add a space and an underscore at the end of each line and then press

Return. Here is an example of a single sentence broken into 3 lines:

Range("A1:E9").Sort Key:=Range("C2"), Order1:=xlAscending, _

MatchCase:=False, Orientation:=xlTopToBottom, _

DataOption1:=xlSortTextAsNumbers

Flickering Screen

Running a macro or VBA code may cause the screen to flicker as the monitor is

the slowest part of the program and cannot keep up with the very fast changes

taking place. To switch off the screen until the program is run enter the following

code line:

Application.ScreenUpdating = False

Screen comes on automatically on completion of the program.

CutCopyMode

After each Paste operation, you should turn off copying:

ActiveSheet.Paste

Application.CutCopyMode = False

DisplayAlerts

If you don't want Excel to ask you things like "Do you want to delete this file..."

you can use the following line of code at the beginning of the relevant VBA

procedure.

Application.DisplayAlerts = False

Then at the end make sure you use the following code to reactivate Display

Alerts.

Application.DisplayAlerts = True

Compare Text

If you try to compare two strings in VBA the system compares the Binary

information of the strings so that

 “My Name” Is Not Equal To “my name”.

8 0207 987 3777 www.MicrosoftTraining.net

To make the computer compare the words in the string, rather than the Binary

you need to enter the code:

Option Compare Text

In the Declarations area of the module.

Quit

The following line of code closes Excel altogether.

Application.Quit

Editing Macros in Visual Basic Editor
When you record a macro, the recorded instructions are inserted into a Procedure

whose beginning and end are denoted with the key words Sub and End Sub. This

is stored within a Module. A module can contain many procedures.

Code generated when a macro is recorded can be modified to provide a more

customised function. To do this:

 Developer Ribbon > Code Section > Macros

 Select the desired macro from the Macro Name list

 Click Edit

The Visual Basic Editor appears.

www.MicrosoftTraining.net 0207 987 3777 9

Make the desired changes

 Save the macro

 Close the Visual Basic Editor window.

Important Note

You can usually figure out how to code any action in Excel by recording it in a

macro and viewing the resulting macro code.

10 0207 987 3777 www.MicrosoftTraining.net

Understanding the Development Environment
Title bar, Menu bar

and Standard

toolbar

The centre of the Visual basic environment. The

menu bar and toolbar can be hidden of customized.

Closing this window closes the program.

Project Explorer Provides an organized view of the files and

components belonging to the project.

If hidden the Project Explorer can be displayed by

pressing Ctrl + R

Properties Window Provides a way to change attributes of forms and

controls (e.g. name, colour, etc). If hidden press F4 to

display.

Code Window Used to edit the Visual basic code. Press F7 and it will

open an object selected in Project Explorer. Close

the window with the Close button that appears on

the menu bar.

Properties

Window

Project

Explore

Code

window

Close

button

www.MicrosoftTraining.net 0207 987 3777 11

Protect/Lock Excel VBA Code
When we write VBA code it is often desirable to have the VBA Macro code not

visible to end-users. This is to protect your intellectual property and/or stop users

messing about with your code.

To protect your code, from within the Visual Basic Editor

 Open the Tools Menu

 Select VBA Project

Properties

The Project Properties dialog

box appears.

 Click the Protection page tab

 Check "Lock project for

viewing"

 Enter your password and

again to confirm it.

 Click OK

After doing this you must Save and Close the Workbook for the protection to

take effect.

The safest password to use is one that uses a combination of upper, lower case

text and numbers. Be sure not to forget it.

12 0207 987 3777 www.MicrosoftTraining.net

Using Help
If the Visual Basic Help files are installed, by pressing F1, a help screen displays

explaining the feature that is currently active:

Alternatively use the Ask a Question box on the menu bar to as a quick way to

find help on a topic.

Closing the Visual Basic Editor

To close the Visual Basic Editor use one of the following:

 Open the File menu; select Close and Return to Microsoft Excel

OR

 Press Alt + Q

OR

 Click Close in the title bar.

www.MicrosoftTraining.net 0207 987 3777 13

Unit 3 Developing with Procedures

In this unit you will learn how to:

 Understand and create modules

 Navigate the tools

 Protect your code

 Understand the personal macro workbook

Procedure is a term that refers to a unit of code created to perform a specific

task. In Excel, procedures are stored in objects called Modules.

In this unit we will look at both Modules and Procedures.

Understanding and Creating Modules
Standard modules can be used to store procedures that are available to all forms,

worksheets and other modules. These procedures are usually generic and can be

called by another procedure while the workbook is open.

Within a project you can create as many standard modules as required. You

should store related procedures together within the same module.

Standard modules are also used to declare global variables and constants. To

create a standard module in the VB Editor:

 Open the Insert menu

 Select Module.

14 0207 987 3777 www.MicrosoftTraining.net

A new Module appears:

 Display the Properties window if necessary

 In the Properties window change the name of the module

Defining Procedures
A procedure is a named set of instructions that does something within the

application.

To execute the code in a procedure you refer to it by name from within another

procedure. This is known as Calling a procedure. When a procedure has finished

executing it returns control to the procedure from which it was called.

There are two general types of procedures:

Sub procedures perform a task and return control to the calling

procedure

Function procedures perform a task and return a value, as well as control,

to the calling procedure

If you require 10 stages to solve a problem write 10 sub procedures. It is easier

to find errors in smaller procedures than in a large one.

The procedures can then be called, in order, from another procedure.

New

Module

Rename

Module

www.MicrosoftTraining.net 0207 987 3777 15

Naming Procedures

There are rules and conventions that must be followed when naming procedures

in Visual Basic.

While rules must be followed or an error will result, conventions are there as a

guideline to make your code easier to follow and understand.

The following rules must be adhered to when naming procedures:

 Maximum length of the name is 255 characters

 The first character must be a letter

 Must be unique within a given module

 Cannot contain spaces or any of these characters: . , @ & $ # () !

You should consider these naming conventions when naming procedures:

 As procedures carry out actions, begin names with a verb

 Use the proper case for the word within the procedure name

 If procedures are related try and place the words that vary at the end of the

name

Following these conventions, here is an example of procedure names:

PrintClientList

GetDateStart

GetDateFinish

Creating a Sub-Procedure
Most Excel tasks can be automated by creating procedures. This can be done by

either recording a macro or entering the code directly into the VB Editor’s Code

window.

Sub procedures have the following syntax:

16 0207 987 3777 www.MicrosoftTraining.net

[Public/Private] Sub ProcedureName ([argument list])

Statement block

End Sub

Public indicates procedure can be called from within other modules. It is the

default setting

Private indicates the procedure is only available to other procedures in the same

module.

The Sub…End Sub structure can be typed directly into the code window or

inserted using the Add Procedure dialog box.

To create a sub procedure:

 Create or display the module to contain the new sub procedure

 Click in the Code window

 Type in the Sub procedure using the relevant syntax

Type in the word Sub, followed by a space and the Procedure name

Press Enter and VB inserts the parenthesis after the name and the End Sub

line.

OR

 Use Add Procedure.

 To display the Add Procedure dialog box:

 Open the Insert menu

 Select Procedure.

The Add Procedure dialog box appears:

www.MicrosoftTraining.net 0207 987 3777 17

 Type the name of the procedure in the

Name text box

 Select Sub under Type, if necessary

 Make the desired selection under

Scope

 Click OK.

Below is an example of a basic sub procedure:

Auto Quick Info is a feature of the Visual Basic that displays a syntax box when

you type a procedure or function name.

The example below shows the tip for the Message Box function:

Arguments in square brackets are optional.

Values passed to procedures are sometimes referred to as parameters.

Working Using the Code Editor
The Code editor window is used to edit Visual Basic code. The two drop down

lists can be used to display different procedures within a standard module or

objects’ event procedures within a class module.

Below is an illustration of the code window:

18 0207 987 3777 www.MicrosoftTraining.net

Object List

Displays a list of objects contained in the current module.

Procedure List Displays a list of general procedures in the current module

when General is selected in the Object list.

When an object is selected in the Object list it displays a

list of events associated with the object.

Procedure View:

Displays procedures

one at a time.

Procedure list Object list

Procedure

separator

Full Module View:

Displays all the procedures in the module one after the other

www.MicrosoftTraining.net 0207 987 3777 19

Setting Code Editor Options

The settings for the Code Editor can be changed. To do this:

 Open the Tools menu in the VB Editor

 Select Options.

The Options dialog box appears:

The following are explanations of the Code Setting selections:

Auto Syntax

Check

Automatically displays a Help message when a syntax error

is detected. Message appears when you move off the code

line containing the error

Require Variable

Declaration

Adds the line Option Explicit to all newly created modules,

requiring all variables to be explicitly declared before they

are used in a statement.

Auto List

Members

Displays a list box under your insertion point after you type

an identifiable object. The list shows all members of the

object class. An item selected from the list can be inserted

into your code by pressing the Tab key

20 0207 987 3777 www.MicrosoftTraining.net

Auto Quick Info Displays a syntax box showing a list of arguments when a

method, procedure or function name is typed

Auto Data Tips Displays the value of a variable when you point to it with a

mouse during break mode. Useful for debugging.

Auto Indent Indent the specified amount when Tab is pressed and

indents all subsequent lines at the same level.

The Windows Settings selections are explained below:

Drag-and-Drop Text Editing Allows you to drag and drop code around the

Code window and into other windows like the

Immediate window.

Default to Full Module View Displays all module procedures in one list with

optional separator lines between each procedure.

The alternative is to show one procedure at a

time, as selected through the Procedure list.

Procedure Separator Displays a grey separator line between

procedures if Module view is selected

Editing Guidelines

Below are some useful guidelines to follow when editing code:

 If a statement is too long carry it over to the next line by typing a space and

underscore (_) character at the end of the line. This also works for comments.

Strings that are continued require a closing quote, an ampersand (&), and a

space before the underscore. This is called Command Line Continuation.

 Indent text within control structures for readability. To do this:

 Select one or more lines

 Press the Tab key OR

 Press Shift + Tab to remove the indent.

www.MicrosoftTraining.net 0207 987 3777 21

 complete statements by pressing Enter or by moving focus off the code line

by clicking somewhere else with the mouse or pressing an arrow key.

When focus is moved off the code line, the code formatter automatically

places key words in the proper case, adjusts spacing, adds punctuation and

standardizes variable capitalization.

It is also a good idea to comment your code to document what is happening in

your project. Good practice is to comment what is not obvious.

Start the line with an apostrophe (‘) or by typing the key word Rem (for remark).

When using an apostrophe to create a comment, you can place the comment at

the end of a line containing a code statement without causing a syntax error.

22 0207 987 3777 www.MicrosoftTraining.net

 Unit 4 Managing Program Execution

In this unit you will learn how to:

 Understand how Excel execute the code

 Use Boolean expressions

 Use decision code (If & Select Case)

 Loop through objects

Defining Control-Of-Flow structures
When a procedure runs, the code executes from top to bottom in the order that

it appears. Only the simplest of programs execute in this manner. Most programs

incorporate logic to control which lines of code to execute.

The Control-Of-Flow structures described below provide this logic:

Sequential

Each line of code is executed in order from top to bottom.

Unconditional

Branching

A statement that directs the flow of program execution to

another location in the program without condition. Calling

a Function, a Sub or using the GoTo statement are

examples of unconditional branching

Conditional

Branching

The code to be executed is based on the outcome of a

Boolean expression. Decision structures like If and Select

Case are used to implement conditional branching.

Looping A block of code executed repeatedly as long as a certain

condition exists. The For…Next and the Do..Loop are

examples of looping structures

Halt

Statements

Commands used to stop code execution. The Stop

command stops execution but retains variables in memory.

The End command terminates the application.

www.MicrosoftTraining.net 0207 987 3777 23

Using Boolean Expressions

A Boolean expression returns a True or False value. Many Boolean expressions

take the form of two expressions either side of a comparison operator. If the

result is true the condition is met and control is passed to the code to be executed.

Here are some examples of Boolean expressions:

Firstname = “Alan”

UnitPrice > 1.60

OrderAmount < 500

The following comparison operators are used in Boolean expressions:

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

= Equal to

<> Not equal to

Is Compares object variables

Like Compares string expressions

When testing for more than one condition Boolean expressions can be joined

with a Logical Operator.

The following is a list of Logical Operators:

24 0207 987 3777 www.MicrosoftTraining.net

And Each expression must be True for the condition to be true.

Or One of the expressions must be True for the condition to be

true.

Not The expression must be False for the condition to be true.

The following are examples of multiple conditions joined by logical operator:

UnitPrice > 1.60 AND OrderAmount > 1000

DateJoined <= 2004 OR DeptName = “Sales”

A null expression will be treated as a false expression.

Using the If...End If Decision Structures
If…End If is used to execute one or more statements depending upon a text

condition. There are four forms of the If construct.

The first contains the condition and statement to be executed in the same line:

If <condition> Then <statement>

If OrderAmount >1000 Then Discount = “Yes”

The block form is used when several statements are to be executed based on

result of the test condition:

If <condition> Then

<statement block>

End If

If Country = “England” Then

Account = “Domestic”

TransportCost = 10.00

End If

www.MicrosoftTraining.net 0207 987 3777 25

Like the If…Then structure the If…Then…Else structure passes control to the

statement block that follows the Then keyword when the condition is True and

passes control to the statement block that follows the Else keyword when the

condition is False.

If <Condition> Then

<statement block>

Else

<statement block>

End If

If Country = “England” Then

Account = “Domestic”

TransportCost = 10.00

Else

Account = “Foreign”

TransportCost = 40.00

End If

By modifying the basic structure and inserting ElseIf statements, an

If…Then…Else block that tests multiple conditions is created. The conditions are

tested in the order of appearance until a condition is true.

If a true condition is found, the statement block following the condition is

performed; execution then continues with the first line of code following the End

If statement. If no condition is true, execution will continue with the End If

statement. An optional Else clause at the end of the block will catch the cases

that do not meet any of the conditions.

26 0207 987 3777 www.MicrosoftTraining.net

If <condition_1> Then

<statementBlock1>

[ElseIf <condition_2> Then

[<StatementBlock2>]]

[ElseIf <condition_3> Then

[<StatementBlock3>]]

[ElseIf <condition_N> Then

[<StatementBlockN>]]

End If

If Country = “England” Then

Account = “Domestic”

TransportCost = 10.00

ElseIf Country = “Wales” Then

Account = “Domestic”

TransportCost = 20.00

ElseIf Country = “Scotland” Then

Account = “Domestic”

TransportCost = 25.00

ElseIf Country = “Northern Ireland” Then

Account = “Domestic”

TransportCost = 30.00

Else

www.MicrosoftTraining.net 0207 987 3777 27

Account = “Foreign”

TransportCost = 40.00

End If

Using the Select Case...End Select Structure
The Select Case statement is often used in place of the complex If statement.

The advantage of using this style is that your code will be more readable and

efficient. The downside is that it is only useful if compared against just one value.

The Select Case structure contains the test expression in the first line of the block.

Each Case statement in the structure then compares against the test expression.

The syntax of the Select Case structure, followed by two examples is shown

below:

28 0207 987 3777 www.MicrosoftTraining.net

Select Case <TestExpression>

Case <Expression_1>

<StatementBlock1>

Case <Expression_2>

<StatementBlock2>

Case <Expression_3>

<StatementBlock3>

Case <Expression_N>

<StatementBlockN>

End Select

Select Case Country

Case “England”

Account = “Domestic”

TransportCost = 10.00

Case “Wales”

Account = “Domestic”

TransportCost = 20.00

Case “Scotland”

Account = “Domestic”

TransportCost = 25.00

Case “Northern Ireland”

Account = “Domestic”

TransportCost = 30.00

www.MicrosoftTraining.net 0207 987 3777 29

Case Else

Account = “Foreign”

TransportCost = 40.00

End Select

Select Case TestScore

Case 0 To 50

Result = “Below Average”

Case 51 To 70

Result = “Good”

Case Is > 70

Result = “Excellent”

Case Else

Result = “Irregular Test Score”

End Select

30 0207 987 3777 www.MicrosoftTraining.net

Using the Do...Loop Structure
The Do…Loop structure controls the repetitive execution of the code based upon

a test of a condition. There are two variations of the structure: Do While and Do

Until.

The Do While structure executes the code as long as the condition is true.

The Do Until structure executes the code up to the point where the condition

becomes true or as long as the condition is false. The condition is any expression

that can be evaluated to true or false.

The Exit Do is optional and can be used to quit the Do statement and resume

execution with the statement following the Loop. Multiple Exit Do statements

can be placed anywhere within the Loop construct.

The following syntax is used to perform the statement block zero or more times:

Do While <condition>

<statement block>

[Exit Do]

Loop

Do Until <condition>

<statement block>

[Exit Do]

Loop

Do While ActiveCell.Value <> “”

ActiveCell.Value = ActiveCell.Value *1.25

ActiveCell.Offset(1).Select

Loop

To perform the statement block at least once, use one of the following:

www.MicrosoftTraining.net 0207 987 3777 31

Do

<statement block>

[Exit Do]

Loop While <condition>

Do

<statement block>

[Exit Do]

Loop Until <condition>

Do

Count = Count +1

Loop Until Count = NoStudents

Using The For...Next Structure
The For…Next structure executes a block of statements a specific number of

times using a counter that increases or decreases values. Beginning with the start

value, the counter is increased or decreased by the increment. The default

increment is 1. Specify an increment of -1 to count backwards.

The Exit For statement is optional and can be used to quit the For construct and

resume execution with the statement following the Next.

Below is the syntax of the For…Next statement:

For <counter> = <start> To <end> [Step <increment>

<statement block>

[Exit For]

Next [<counter>]

32 0207 987 3777 www.MicrosoftTraining.net

Dim MyIndex as Integer

For MyIndex = 1 To NoRows

Cells (MyIndex,4).Select

Total = Total + Cells (NoRows,4).Value

Next MyIndex

Using the For Each...Next Structure
The For Each…Next structure is used primarily to loop through a collection of

objects. With each loop it stores a reference to a given object within the collection

to a variable. The variable can be used by the code to access the object’s

properties. By default it will loop through ALL the objects in a collection.

The Exit For statement is optional and can be used to quit the For Each construct

and resume execution with the statement following the Next.

Below is the syntax of the For Each…Next statement:

For Each <element> in <CollectionReference>

<statement block>

[Exit For]

Next [<element>]

Dim BookVar As Workbook

For Each BookVar In Application.Workbooks

BookVar.Save

Next BookVar

www.MicrosoftTraining.net 0207 987 3777 33

Guidelines for Use Of Control-Of-Flow Structures
Use the following as a guide in choosing the appropriate Decision structure:

Use To

If…Then Or If…Then…End If Execute one statement based on the

result of one condition

If…Then…End If Execute a block of statements based on

the result of one condition

If…Then…Else…End If Execute 1 of 2 statement blocks based on

the result of one condition

Select Case…End Select Execute 1 of 2 or more statement blocks

based on 2 or more conditions, with all

conditions evaluated against 1

expression.

If…Then…ElseIf…End If Evaluate 1 of 2 or more statement blocks

based on 2 or more conditions, with

conditions evaluated against 2 or more

expressions.

34 0207 987 3777 www.MicrosoftTraining.net

Use the following as a guide in choosing the appropriate Looping structure:

Use To

For…Next Repeat a statement block a specific

number of times. The number is known or

calculated at the beginning of the loop

and doesn’t change.

For…Each

Repeat a statement block for each

element in a collection or array.

For…Next Repeat a statement block while working

through a list when the number of list

items is known or is calculated

beforehand.

Do…Loop Repeat a statement block while working

through a list when the number of list

items is not known or are likely to change.

Do…Loop Repeat a statement block while a

condition is met.

www.MicrosoftTraining.net 0207 987 3777 35

Unit 5 Debugging the Code

In this unit you will learn how to:

 Understand errors

 Navigate the tools

 Protect your code

 Understand the personal macro workbook

Understanding Errors
When developing code, problems will always occur. Wrong use of functions,

overflow and division by zero are some of the things that will cause an error and

not produce the intended results.

Errors are called Bugs. The process of removing bugs is known as Debugging.

VBA provides tools to help see how the code is running.

There are three general types of errors:

Syntax Errors

Syntax errors occur when code is entered incorrectly and is typically discovered

by the line editor or the compiler.

 Discovered by Line Editor: When you move off a line of code in the Code

window, the syntax of the line is checked. If an error is detected the whole

line turns red by default indicating the line needs to be changed.

 Discovered by Compiler: While the line editor checks one line at a time, the

compiler checks all the lines in each procedure and all declarations within the

project. If Option Explicit is set, the compiler also checks that all variables

are declared and that all objects have references to the correct methods,

properties and events. The compiler also checks that all required statements

are present, for example that each If has an End If. When the compiler finds

an error it displays a message box describing the error.

36 0207 987 3777 www.MicrosoftTraining.net

Run-Time Errors

When a program is running and it encounters a line of code that it cannot be

executed, a run-time error is generated. These errors occur when a certain

condition exists. A condition could run fine 10 times but cause an error on the

11th. When a run-time error occurs, execution is halted a message box appears

defining the error.

Logic Errors

Logic errors create unexpected outcomes when a procedure is executed. Unlike

syntax or run-time errors the application is not halted and you are not shown the

offending line of code. These errors are more difficult to locate and correct.

Minimizing Errors

Here are a few suggestions to help you minimize or make it easier to find errors

in your code:

 Add comments to code explaining what a line of code or procedure is meant

to do. This is important if other people are going to look at the code.

 Create meaningful variable names. Use prefixes to identify data or object type.

 Any time you use division that contains a variable in the denominator, test the

denominator to ensure that it doesn’t equal zero

 Force variable declarations with the use of Option Explicit. A simple

misspelling of a variable name will lead to a logic error, not a run-time error.

 Give procedures names that clearly describe what they do.

 Keep procedures as short as possible, giving it one or two specific tasks to

carry out.

 Test procedures with large data sets representing all possible permutations of

reasonable or unreasonable data. Make your procedure fail before someone

else does.

www.MicrosoftTraining.net 0207 987 3777 37

Using Debugging Tools
VBA’s debugging tools are useful for checking and understanding the cause of

logic and run-time errors in the code.

The toolbar buttons as they appear left to right are explained below:

Design Mode Turns design mode off and on.

Run / Continue Runs code or resumes after a code break

Break

Stops the execution of a program while it's running

and switches to Break Mode.

Reset

Clears the execution stack and module level variables

and resets the project.

Toggle Breakpoint Sets or removes a Break Point at the current line.

Step Into Executes code one statement at a time.

Step Over Allows selected ode to be stepped over during

execution.

Step Out

Executes the remaining lines of a procedure after a

break

Locals Window Displays the value of variables and properties during

code execution

Immediate Window Displays a window where individual lines of code can

be executed and variables evaluated.

Watch Window Displays the value of each expression that is added to

a window.

Quick Watch Displays the current value of the selected expression.

Call Stack Displays all the currently loaded procedures

Debugging is done when the application is suspended (in Break Mode).

Everything loaded into memory remains in memory and can be evaluated. A

program enters Break mode in one of the following ways

 A code statement generates a run-time error

38 0207 987 3777 www.MicrosoftTraining.net

 A breakpoint is intentionally set on a line of code

 A Stop statement is entered within the program code.

Identifying the Value of Expressions
While debugging it is useful to find out the value of variables and expressions

while your code is executing.

VBA has the Locals Window, Immediate Window, Watch Window and Quick

Watch, described in Using Debugging Tools on the previous page, which can

be used to find the values of expressions

Another quick way of finding out the value of variables and expressions is the

Auto Data Tip which displays the value of the expression where the mouse is

pointing.

Setting Breakpoints

Setting breakpoints allows you to identify the location where you want your

program to enter into break mode. The program runs to the line of code and

stops. The code window displays and the line of code where the break point is

set is highlighted.

When the code is halted, the value of a variable or expression can be checked by

holding the mouse pointer over the expression or in the immediate window.

To set a breakpoint open the code window and select the desired procedure:

www.MicrosoftTraining.net 0207 987 3777 39

 Position the insert point on the

desired line of code

 Set the breakpoint by clicking

Toggle Breakpoint on the

Debug toolbar

OR

 Open the Debug menu and

select Toggle Breakpoint

OR

 Click in the grey area to the left

of the line of code

How to Step Through Code
The step tools allow you to step one line at a time through the code to see exactly

which statements in your procedure are being executed.

Step Into

F8 Executes code one statement at a time. If

the statement calls another procedure

execution steps into the called procedure

and continues to execute one step at a

time.

Step Over

Shift + F8 Executes code one statement at a time. If

the statement calls another procedure the

procedure is executed without pausing.

Step Out

Ctrl + Shift +

F8

Executes the remaining lines of a

procedure without pausing.

40 0207 987 3777 www.MicrosoftTraining.net

Run To Cursor Ctrl + F8 Runs from the current statement to the

location of the cursor in the Code window

if you are stepping through code.

Set next

Statement

Ctrl + F9 Runs the statement of your choice rather

than the next statement.

Call Stack

Ctrl + L Displays all the currently active procedures

in the application that have started but are

not completed.

Working with Break Mode during Run Mode
During code execution the program can enter into Break Mode either

intentionally or because of a run-time error. When a run-time error occurs a

message appears that describes the error.

Click the Debug button to display the code window with the offending line

highlighted.

If during the program execution you need to intervene, for example it’s stuck in

an endless loop, you can do so by pressing Ctrl + Break or the Break button in

the Visual Basic Editor. It is also possible to break pressing Esc twice quickly.

That action will suspend the program execution and produce the following

message:

www.MicrosoftTraining.net 0207 987 3777 41

Using the Immediate Window
The Immediate window is a debugging feature of Visual Basic. It can be used to

enter commands and evaluate expressions.

Code stored in a sub or function procedure can be executed by calling the

procedure from the Immediate window.

To open the Immediate window:

 Open the View menu

 Select Immediate window

OR

 Press Ctrl+G.

The Immediate window appears.

To execute a sub procedure:

 Type SubProcedureName ([Argument list])

 Press Enter.

42 0207 987 3777 www.MicrosoftTraining.net

To execute a function and print the return value in the window:

 Type ? FunctionName ([Argument list])

 Press Enter.

To evaluate an expression:

 Type ? Expression

 Press Enter.

Within the code, especially in loops, use the Debug.Print statement to display

values in the Immediate window while the code is executing. The Immediate

window must be open for this.

www.MicrosoftTraining.net 0207 987 3777 43

Unit 6 Understanding Objects

In this unit you will learn how to:

 Understand the visual basic editor

 Navigate the tools

 Protect your code

 Understand the personal macro workbook

An object is an element of an application that can be accessed and manipulated

using Visual Basic. Examples of objects in Excel are worksheets, charts and ranges.

Defining Objects
Objects are defined by lists of Properties, and Methods. Many also allow for

custom sub-procedures to be executed in response to Events.

The term Class refers to the general structure of an object. The class is a template

that defines the elements that all objects within that class share.

Properties

Properties are the characteristics of an object. The data values assigned to

properties describe a specific instance of an object.

A new workbook in Excel is an instance of a Workbook object, created by you,

based on the Workbook class. Properties that define an instance of a Workbook

object would include its name, path, password, etc.

Methods

Methods represent procedures that perform actions.

Printing a worksheet, saving a workbook selecting a range are all examples of

actions that can be executed using a method.

Events

Many objects can recognize and respond to events. For each event the object

recognizes you can write a sub procedure that will execute when the specific

event occurs.

44 0207 987 3777 www.MicrosoftTraining.net

A workbook recognizes the Open event. Code inserted into the Open event

procedure of the workbook will run whenever the workbook is opened.

Events may be initiated by users, other objects, or code statements. Many objects

are designed to respond to multiple events.

Examining the Excel Object Hierarchy
The Excel Object Module is a set of objects that Excel exposes to the development

environment. Many objects are contained within other objects. This indicates a

hierarchy or parent-child relationship between the objects.

The Application object represents the application itself. All other objects are

below it and accessible through it. It is by referencing these objects, in code, that

we are able to control Excel.

Objects, their properties and methods are referred to in code using the “dot”

operator as illustrated below:

Application.ActiveWorkbook.SaveAs “Employees.xls”

Some objects in Excel are considered global. This means they are on top of the

hierarchy and can be referenced directly. The Workbook object is a child object

of the Excel Application object. But since the Workbook object is global you don’t

need to specify the Application object when referring to it.

Therefore the following statements are equal:

Application.ActiveWorkbook.SaveAs “Employees.xls

ActiveWorkbook.SaveAs “Employees.xls”

Parent

Object

Child

Object
Method of the Child

Object

Argument of Method

www.MicrosoftTraining.net 0207 987 3777 45

Some objects in the Excel Object model represent a Collection of objects. A

collection is a set of objects of the same type.

The Workbooks collection in Excel represents a set of all open workbooks. An

item in the collection can be referenced using an index number or its name.

To view the entire Excel Object model:

 Open the Help window

 Select the Contents tab

 Expand Programming Information

 Expand Microsoft Excel Visual basic Reference

 Select Microsoft Excel Object Model.

The following illustration shows a portion of the Excel object hierarchy. Most

projects will only use a fraction of the available objects.

46 0207 987 3777 www.MicrosoftTraining.net

www.MicrosoftTraining.net 0207 987 3777 47

Defining Collections
A collection is a set of similar objects such as all open workbooks, all worksheets

in a workbook or all charts in a workbook.

Many Excel collections have the following properties:

Application Refers to the application that contains the collection

Count An integer value representing the number of items in the

collection.

Item Refers to a specific member of the collection identified by name

or position. Item is a method rather than a property

Parent Refers to the object containing the collection

Some collections provide methods similar to the following:

Add Allows you to add items to a collection

Delete Allows you to remove an item from the collection by identifying

it by name or position.

Referencing Objects in a Collection
A large part of programming is referencing the desired object, and then

manipulating the object by changing its properties or using its methods. To

reference an object you need to identify the collection in which it’s contained.

The following syntax references an object in a collection by using its position.

Since the Item property is the default property of a collection there is no need to

include it in the syntax.

CollectionName(Object Index Number)

Workbooks.Item(1)

Workbooks(1)

Charts(IntCount)

48 0207 987 3777 www.MicrosoftTraining.net

The following syntax refers to an object by using the object name. Again the Item

property is not necessary:

CollectionName(ObjectName)

Workbooks(“Employees”)

Worksheets(“Purchases By Month”)

Sheets(“Total Sales”)

Charts(“Profits 2006”)

Using the Object Browser
The Object Browser is used to examine the hierarchy and contents of the various

classes and modules.

The Object Browser is often the best tool to use when you are searching for

information about an object such as:

 Does an object have a certain property, method or event

 What arguments are required by a given method

 Where does an object fit in the hierarchy

To access the Object Browser:

In the Visual Basic Editor, do one of the following:

 Open the View menu

 Select Object Browser OR

 Press F2 OR

 Click the Object Browser icon.

The Object Browser dialog box appears.

www.MicrosoftTraining.net 0207 987 3777 49

The following icons and terms are used in the Object Browser:

Class Indicates a Class (Eg Workbook, Worksheet, Range, Cells)

Property Is a value representing an attribute of a class (Eg. Name,

Value)

Method Is a procedure that perform actions (Eg. Copy, Print Out,

Delete)

Event Indicates an event which the class generates (Eg Click,

Activate)

Constant Is a variable with a permanent value assigned to it (Eg vbYes)

Enum Is a set of constants

Module Is a standard module

To search for an object in the Object Bowser:

 Type in the search criteria in the Search Text box

 Click

To close the Search pane:

Click

Indicates the

library or project

for which

objects are

displayed

Create a search by

typing search

criteria here
List of classes and

objects

The Details

section provides

descriptive

information for

the selected class

or member

List of the

members of

the selected

class or

object.

50 0207 987 3777 www.MicrosoftTraining.net

Working with Properties
Most objects in Excel have an associated set of properties. During execution,

code can read property values and in some cases, change them as well.

The syntax to read an object’s property is as follows:

ObjectReference.PropertyName

ActiveWorkbook.Name

The syntax to change an object’s property is as follows:

ObjectReference.PropertyName = expression

ActiveWorkbook.Name = “Quarterly Sales 2006”

The With Statement
The With statement can be used to work with several properties or methods

belonging to a single object without having to type the object reference on each

line.

The With statement helps optimize the code because too many “dots” in the

code slows down execution. The syntax for the With statement is as follows:

With ObjectName

<Statement>

End With

With ActiveWorkbook

 .PrintOut

 .Save

 .Close

End With

You can nest With statements if needed.

Make sure that the code does not jump out of the With block before the End

With statement executes. This can lead to unexpected results.

www.MicrosoftTraining.net 0207 987 3777 51

Working With Methods
Many Excel objects provide public Sub and Function procedures that are callable

from outside the object using references in your VB code. These procedures are

called methods, a term that describes actions an object can perform.

Some methods require arguments that must be supplied when using the method.

The syntax to invoke an object method is as follows:

ObjectReference.method [argument]

Workbooks.Open “Sales 2006”

Range(“A1:B20”).Select

Selection.Clear

When calling procedures or methods that have arguments you have two choices

of how to list the argument values to be sent.

Values can be passed by listing them in the same order as the argument list. This

is known as a Positional Argument.

Alternatively you can pass values by naming each argument together with the

value to pass. This is known as a Named Argument. When using this method it

is not necessary to match the argument order or insert commas as placeholders

in the list of optional arguments

The syntax for using named arguments is as follows:

Argumentname:= value

The example shows the PrintOut method and its syntax:

Sub

PrintOut([From],[To],[Copies],[Preview],[ActivePrinter],[PrintToFile],[Collate],

[PrToFilename])

The statements below show both ways of passing values when calling the

PrintOut method. The first passes by Position, the second by Naming:

Workbooks(“Quarterly Sales 2006”).PrintOut (1,2,2, , , ,True)

Workbooks(“Quarterly Sales 2006”).PrintOut From:=1, To:=2, Copies:=2,

Collate:=True

52 0207 987 3777 www.MicrosoftTraining.net

Event Procedures
An event procedure is a sub procedure created to run in response to an event

associated with an object. For example run a procedure when a workbook opens.

Event procedure names are created automatically. They consist of the object,

followed by an underscore and the event name. These names cannot be changed.

Event procedures are stored in the class module associated with the object for

which they are written.

The syntax of the Activate Event procedure is as follows:

Private Sub Worksheet_Activate()

Creating An Event Procedure

To create an Event Procedure:

 Display the code

window for the

appropriate class

module

 Select the Object

from the Object

drop-down list

 Select the event

from the Procedure

drop-down list

 Enter the desired

code in the Event

Procedure

Object drop-

down list

Procedure drop-

down list shows all

the events for the

selected object

www.MicrosoftTraining.net 0207 987 3777 53

Excel VBA – Quick Reference Guide

Subject Examples / Notes

Building

Blocks

VBA Terminology Objects (eg Worksheet)

Property (eg Name)

Method (eg Close)

Procedure

Container Objects (eg Workbook)

Collection Objects (eg Worksheets)

Type “Microsoft Excel Objects” in VBE Help

to get the Excel object Hierarchy

 Visual Basic Editor

(VBE)

The Projects window

The Properties window

The Code window

Alt-F11 – back and forth between VBE and

Excel

 Changing object

properties

Using the Properties window

OR

Using code: Object.property = newvalue

Eg: ActiveSheet.Name = “New Sheet”

 Using methods Syntax: object.method

Eg: ActiveCell.Select

 ActiveSheet.Protect

 Coding to react to

events

In the code window, select the object from

the top left drop down menu and the Event

from the top right drop down menu Eg:

Private Sub Worksheet_Activate()

End Sub

54 0207 987 3777 www.MicrosoftTraining.net

 Msgbox Msgbox(“This is my message”)

vbCrLf (Carriage return and Linefeed)

Allows text displayed on a MsgBox to appear

on multiple lines

 Adding Buttons To toolbar (right click on toolbar and choose

Customise)

To worksheet (display Forms or Visual Basic

toolbars)

 Object Browser In VBE, select View / Object Browser to

explore the ‘library’ of VBA code

Subject Examples / Notes

Dealing

with Data

Data Types Byte, Boolean, Integer, Long, Single, Double,

String, Date, Currency. .Also Variant and

Object

Type “Data Type Summary” in VBE Help to

get the sizes and ranges for all data types

 Variables Declaring variables:

 Implicitly by just using them

 Explicitly (Dim variable as type)

Initialising (i.e. giving a variable a value):

 UserName = “My Name”

 Deptnumber = 234

 Scope Procedure Level scope:

Private Sub Worksheet_Activate()

Dim MyVariable As String

 MyVariable = "Jonathan"

End Sub

Module Level scope:

www.MicrosoftTraining.net 0207 987 3777 55

Option Explicit

Dim MyVariable As String

Private Sub Worksheet_Activate()

 MyVariable = "Jonathan"

End Sub

Public scope:

Option Explicit

Public MyVariable As String

Private Sub Worksheet_Activate()

 MyVariable = "Jonathan"

End Sub

 Modules Insert menu to insert new module

 Procedures Add menu to add new procedure, or type it:

Sub MyProceture

End Sub

 Calling Procedures Call MyProcedure

56 0207 987 3777 www.MicrosoftTraining.net

Subject Examples / Notes

Controlling

Program

Flow

Decision Structures If X = Y Then

Elseif X = Z Then

Else

End If

 Select Case username

 Case “Liz”

 Case “Jonathan”

End Select

 Loop Structures Fixed Iterations

For ThisCount = 1 to 10

Next ThisCount

 Variable Iterations

 For Each SheetVar In Worksheets

 (for Collections)

 Next

 Do While / Until X = Y

 Loop

www.MicrosoftTraining.net 0207 987 3777 57

Subject Examples / Notes

More User

Interaction

Creating a Custom

User Form

In VBE, select Insert and UserForm

 Adding Controls Use the control toolbox

 Naming Discipline With Forms and Buttons and other

controls…

Change the name (use the Properties

window) – eg:

 frmMainCommands

 txtUserName

 cmdCloseButton

 Adding code to

forms/controls

Double-click on the object

Refer to objects in your code, eg:

 txtUserName.Value = “Some Text”

58 0207 987 3777 www.MicrosoftTraining.net

Subject Examples / Notes

 Responding to

Events

In Code Window for forms, use top left

drop down menu to select a control, and

top right drop down menu shows events

Eg:

 Private Sub

cmdEnterName_Click()

Range("E1").Value = txtUserName

End Sub

Or

 Private Sub

 txtUserName_AfterUpdate()

If txtName.Value>11 And

txtName.Value<15 Then

 Exit Sub

Else

 MsgBox ("Not a valid Dept number")

 txtUserName.Value = ""

End If

End Sub

www.MicrosoftTraining.net 0207 987 3777 59

Subject Examples / Notes

Debugging

and

Handling

Errors

Types of Error Compile Time

Run Time

Logical

Type “Trappable Errors” in VBE Help to

get the list of all trappable errors and

their descriptions

 Debugging Tools On the Debug menu:

 Breakpoint

On the View menu:

 Locals Window

 (all variables)

 Watch Window

(your choice of variables)

 Immediate Window

 On Error On Error Goto Label

Label:

(must be left justified & with a colon)

On Error Resume Next

60 0207 987 3777 www.MicrosoftTraining.net

Subject Examples / Notes

Extras Line

continuation

Workbooks.Open Filename:= _

 "c:\MyDocuments\Excel VBA\Courses2005.xls"

 MsgBox

buttons

Resp = MsgBox(“Do you want to continue?”, _

vbYesNoCancel)

If Resp = 6 then

 Msgbox(“You hit ‘Yes’ didn’t you?”)

Elseif Resp = 7 then

 Msgbox(“You hit ‘No’ didn’t you?”)

Elseif Resp = 2 then

 Msgbox(“You hit ‘Cancel’ didn’t you?”)

End If

Type “VB Constants” in VBE Help to view the

selection of VB Constants available

 Breaking Out Press Ctrl-Break keys to interrupt code manually

(or break out of an unending loop)

 Stop Alternative to Breakpoint

Sub Import()

 Stop

End Sub

www.MicrosoftTraining.net 0207 987 3777 61

Subject Examples / Notes

 Other useful

code

Application.Dialogs(xlDialogOpen).Show

ActiveWindow.ActivateNext

Stop Screen Flickering

Running VBA code may cause the screen to

flicker. To switch off the screen until the program

is run enter the following code line:

Application.ScreenUpdating = False

Screen comes on automatically on completion of

the program.

To Save a Workbook and close an Application

ActiveWorkbook.Save

ActiveWorkbook.SaveAs “Employees.xls” (Save

Workbook with different name)

Application.Quit (Quit the application. Code can

be used in all Office applications

E&OE

STL Training reserves the right to revise this publication and make changes from

time to time in its content without notice.

