
[image: image1.emf]To guide you through your

training while you are on the

course.

Contains unit objectives,

exercises and space to

write notes.

In-course

handbook

1

12 months

access to Microsoft

trainers

3

Available through online

support forum.

Need help? Our team of

Microsoft qualified trainers

are on hand to offer advice

and support.

Your delegate account

gives you access to:

•Reference material

•Course exercise files

•Advice & support forum

•Rewards programme

•Promotions & Newsletters

Delegate

account

4

Hints and tips available

online from our Microsoft

qualified trainers for:

•All MS Office applications

•VBA

•MS Project

•MS Visio

+ more

Trainer hints

and tips

5

Save on further training

courses you book with

Promotions.

•30% off list price

(time limited)

•£50 off list price

(blue card discount)

Save with

Promotions

6

Reference

material

Available online through

your delegate account.

Comprehensive reference

material with 100+ pages,

containing step-by-step

instructions.

2

[image: image10.png][image: image11.png][image: image12.png][image: image13.png][image: image14.png][image: image15.png][image: image16.png][image: image17.png][image: image18.png][image: image19.png][image: image20.png][image: image21.png]
E&OE

Best Training reserves the right to revise this publication and make changes from time to time in its content without notice.

Your Best STL Learning Tools

Welcome to your Best STL training course.

As part of your training, we provide you with the following tools and resources to support and enhance your learning experience.

Thank you for choosing Best STL.

[image: image22.png]
[image: image44.png]
Contents
1Unit 1 Using Intrinsic Functions, Variables and Expressions

1Defining Expressions and Statements

3How to Declare Variables

5Determining Data Types

8Programming with Variable Scope

10Harnessing Intrinsic Functions

10Defining Constants and Using Intrinsic Constants

12Unit 2 Creating User Defined Functions

12Creating a Function Procedure

13Calling a UDF

13Using a function within an Excel Workbook

15Unit 3 Message Boxes and Input Boxes

15Adding Message Boxes

19Using Input Boxes

20How to Declare and Use Object Variables

21Unit 4 Handling Errors

21Defining VBA's Error Trapping Options

22Capturing Errors with the On Error Statement

23Determining the Err Object

24Coding an Error-Handling Routine

26Using Inline Error Handling

27Unit 5 Creating Forms and Controls

27Defining UserForms

28Utilising the Toolbox

29Using UserForm Properties, Events And Methods

31Understanding Controls

33Setting Control Properties in the Properties Window

34Using the Label Control

34Using the Text Box Control

35Using the Command Button Control

35Using the Combo Box Control

36Using the Frame Control

36Using Option Button Controls

36Using Control Appearance

37Setting the Tab Order

38Filling a Control

38Adding Code to Controls

38How to Launch a Form in Code

39Appendix: Using the PivotTable Object

39Understanding PivotTables

39Creating A PivotTable

392003 Pivot Wizard Procedure

402007/2010/2013 Procedure

41Using the PivotTable Wizard Method

42Using PivotFields

44Excel VBA – Quick Reference Guide

Unit 1 Using Intrinsic Functions, Variables and Expressions
Defining Expressions and Statements
Any programming language relies on its expressions and the statements that put those expressions to use.

Expressions

An expression is a language element that, alone or in combination represents a value.

The different expression types typical of Visual basic are as follows:

	String
	Evaluates to a sequence of characters

	Numeric
	Evaluates to anything that can be interpreted as a number

	Date
	Evaluates to a date

	Boolean
	Evaluates to True or False

	Object
	Evaluates to an object reference

Expressions can be represented by any combination of the following language elements:

	Literal
	Is the actual value, explicitly stated.

	Constant
	Represents a value that cannot be changed during the execution of the program. (Eg. vbNo, vbCrLf)

	Variable
	Represents a value that can be changed during the execution of the program.

	Function/Method

/Property
	Performs a procedure and represents the resulting value. This also includes self-defined functions

	Operator
	Allows the combination of expression elements
+, - , * , / , >, <, =, <>

Statements
A statement is a complete unit of execution that results in an action, declaration or definition.

Statements are entered one per line and cannot span more than one line unless the line continuation character (_) is used.
Statements combine the language’s key words with expressions to get things done.

Below are some examples of statements:

	ActiveWorksheet.Name = “Quarterly Sales 2006”

Label = ActiveCell.Value

CurrentPrice = CurrentPrice * 1.1
ActiveSheet.PasteSpecial Paste:= Values _

 Operation:= None

[image: image23.png]Notes

	

	

	

	

	

	

	

How to Declare Variables
A variable is name used to represent a value. Variables are good at representing values likely to change during the procedure. The variable name identifies a unique location in memory where a value may be stored temporarily.

Variables are created by a Declaration statement. A variable declaration establishes its name, scope, data type and lifetime.

The syntax for a Variable declaration is as follows:

	Dim/Public/Private/Static VariableName [As <type>]

Dim EmpName as String
Private StdCounter as Integer

Public TodaysDate As Date

Naming Variables
To declare a variable you give it a name. Visual Basic associates the name with a location in memory where the variable is stored.
Variable names have the following limitations:

· Must start with a letter
· Must NOT have spaces
· May include letters, numbers and underscore characters

· Must not exceed 255 characters in length
· Must not be a reserved word like True, Range, Selection
Assigning Values To Variables

An Assignment statement is used to set the value of a variable. The variable name is placed to the left of the equal sign, while the right side of the statement can be any expression that evaluates to the appropriate data type.
The syntax for a Variable declaration is as follows:

	VariableName = expression
StdCounter = StdCounter + 1
SalesTotal = SalesTotal + ActiveCell.Value

Declaring Variables Explicitly
VBA does not require you to explicitly declare your variables. If you don't declare a variable using the Dim statement, VBA will automatically declare the variable for you the first time you access the variable. While this may seem like a nice feature, it has two major drawbacks:
· It doesn't ensure that you've spelled a variable name correctly
· It declares new variables as Variants, which are slow
Using Dim, Public, Private and Static declaration statements result in Explicit variable declarations.

You can force VBA to require explicit declaration be placing the statement Option Explicit at the very top of your code module, above any procedure declaration.
With this statement in place, a Compiler Error - Variable Not Defined message would appear when you attempt to run the code, and this makes it clear that you have a problem. This way you can fix the problem immediately.

Although, this forces you to declare variables, there are many advantages. If you have the wrong spelling for your variable, VBE will tell you. You are always sure that your variables are considered by VBE.
The best thing to do is tell the VBA Editor to include this statement in every new module. See Setting Code Editor Options on Page 21.
Important Note

When you declare more than one variable on a single line, each variable must be given its own type declaration. The declaration for one variable does not affect the type of any other variable. For example, the declaration:

Dim X, Y, Z As Single

is NOT the same as declaration

Dim X As Single, Y As Single, Z As Single
It IS the same as

Dim X As Variant, Y As Variant, Z As Single
For clarity, always declare each variable on a separate line of code, each with an explicit data type.
Determining Data Types
When declaring a variable you can specify a data type.
The choice of data type will impact the programs accuracy, efficiency, memory usage and its vulnerability to errors.
Data types determine the following:

· The structure and size of the memory storage unit that will hold the variable
· The kind and range of values the variable can contain. For example in the Integer data type you cannot store other characters or fractions

· The operations that can be performed with the variable such as add or subtract.

Important Info
If data type is omitted or the variable is not declared a generic type called Variant is used as default.

Excessive use of the Variant data type makes the application slow because Variants consume lots of memory and need greater value and type checks.
[image: image24.png]Notes

	

	

	

	

	

	

Numeric Data Types

Numeric data types provide memory appropriate for storing and working on numbers. You should select the smallest type that will hold the intended data so as to speed up execution and conserve memory.
Numeric operations are performed according to the order of operator precedence:

Operations inside parentheses () are performed first. Excel evaluates the operators from left to right.

The following numeric operations are shown in order of precedence and can be used in with numeric data types.
	Exponentiation (^)
	Raises number to the power of the exponent

	Negation (-)
	Indicates a negative operand (as in –1)

	Divide and Multiply (/ *)
	Multiply and divide with floating point result

	Modulus (Mod)
	Divides two numbers and returns the remainder

	Add and Subtract (+ -)
	Adds and subtracts operands

String Data Types
The String data type is used to store one or more characters.

The following operands can be used with strings:

	Concatenation (&)
	Combines two string operands. If an operand is numeric it is first converted to a string-type Variant

	Like LikePattern
	Provides pattern matching strings

[image: image25.png]Notes

	

	

	

VBA supports the following data types:
	Data type
	Storage size
	Range

	Boolean
	2 bytes
	True or False

	Byte
	1 byte integer
	0 to 255

	Integer
	2 bytes
	-32,768 to 32,767

	Long
(long integer)
	4 byte integer
	-2,147,483,648 to 2,147,483,647

	Single
	4 byte floating point
	Approximate range -3.40 x 1038 to 3.40 x 1038

	Double
	8 byte floating point
	-1.79769313486231E308 to
-4.94065645841247E-324 for negative values;
 4.94065645841247E-324 to 1.79769313486232E308 for positive values

	Currency
	8 bytes fixed point
	-922,337,203,685,477.5808 to 922,337,203,685,477.5807

	String
(variable-length)
	10 bytes +
	0 to approximately 2 billion characters

	String
(fixed-length)
	Length of string
	1 to approximately 65,400 characters

	Variant (Numeric)
	16 bytes
	Any numeric value up to the range of a Double

	Variant (String)
	22 bytes +
	Same range as for variable-length String

	Decimal
	12 byte
(Only used within a Variant)
	28 places to the right of the decimal; smallest non-zero number is
+/-0.0000000000000000000000000001

	Date
	8 byte floating point
	1 January 100 to 31 December 9999

	Object
	4 bytes
	An address reference to an Object

Important Info
For monetary values with up to 4 decimal places use the Currency data type.
Single and Double data types can be affected by small rounding errors.

A numeric variable of any type may be stored to a numeric variable of another type. The fractional part of a Single or Double will be rounded off when stored to an Integer type variable.
Programming with Variable Scope
The keywords used to declare variables, Dim, Static, Public or Private, define the scope of the variable. The scope of the variable determines which procedures and modules can reference the variable.
Procedure-Level Variables
These are probably the best known and widely used variables. They are declared (Dim or Static) inside the Procedure itself. Only the procedure that contains the variable declaration can use it. As soon as the Procedure finishes, the variable is destroyed.
Module-Level Variables
These are variables that are declared (Dim or Private) outside the Procedure itself in the Declarations section of a module.
By default, variables declared with the Dim statement in the Declarations section are scoped as private. However, by preceding the variable with the Private keyword, the scope is obvious in your code.
All variables declared at this level are available to all Procedures within the Module. Its value is retained unless the variable is referenced outside its scope, the Workbook closes or the End Statement is used.
Public Variables
These variables are declared at the top of any standard Public module. Public variables are available to all procedures in all modules in a project
The Public keyword can only be used in the Declarations section

Public procedures, variables, and constants defined in other than standard or class modules, such as Form modules or Report modules, are not available to referencing projects, because these modules are private to the project in which they reside.

Variables are processed in the following order:
1. Local (Dim)

2. Module-Level (Private, Dim)

3. Public (Public)
[image: image26.png]Notes

	

	

	

The diagram below illustrates how variables can be accessed across procedures, modules and forms, based on the scope of each variable:
[image: image27.png]
Each of the procedures can only see the variables as follows:
	Procedure A can see: A1, A2, Mod1, X, Y

Procedure B can see: B1, Mod1, X, Y

Procedure C can see: C1, Frm1, X, Y

Procedure D can see: D1, D2, Frm2, X, Y

[image: image28.png]Notes

	

	

	

	

	

	

Harnessing Intrinsic Functions
An intrinsic function is similar to a function procedure in that it performs a specific task or calculation and returns a value. There are many intrinsic functions that can be used to manipulate text strings, or dates, covert data or perform calculations.
Intrinsic functions appear as methods in the Object Browser. To view and use them:

	[image: image29.png]
	· Select VBA from the Project/Library drop down list.

· Select <globals> in the Classes pane.

· Select the required intrinsic function.

For further help on a particular function, display the Visual Basic Help window. On the Contents tab:

· Expand Visual Basic Language Reference

· Expand Functions

· Expand the appropriate alphabet range

· Select the desired function.
Defining Constants and Using Intrinsic Constants
A constant is a variable that receives an initial data value that doesn’t change during the programs execution. They are useful in situations where a value that is hard to remember appears over and over. The use of constants can make code more readable.
The value of the constant is also set in the declaration statement. Constants are Private by default, unless the Public keyword is used.
The syntax of a Constant declaration is as follows:

	[Public] [Private] Const ConstantName [<As type>] = <ConstantExpr>

Const conPassMark As String = “C”

Public Const conMaxSpeed As Integer = 30

Using Intrinsic Constants
VBA has many built-in constants that can be used in expressions. VBA constants begin with the letters vb while constants belonging to the Excel object library begin with xl.
To access Intrinsic constants in the Object Browser follow the steps below:
	[image: image30.png]
	· Select VBA from the Project/Library drop down list.

· Select the object you want to use in the Classes pane e.g. vbMsgBoxResult.

· Select the required intrinsic function e.g. vbOK

Some useful Visual Basic constants are listed below:
	Constant
	Equivalent to:
	Same as pressing:

	vbCr

	Carriage Return
	[image: image31.png]

	vbTab

	Tab character
	[image: image32.png]

	vbLf

	Soft return and linefeed
	[image: image33.png]
[image: image34.png]+

	vbCrLf
	Combination of carriage return and linefeed

	

	vbBack

	Backspace character
	[image: image35.jpg]

	vbNullString

	Zero length string
	“”

For a full list of Visual Basic Constants, search Help for VB Constants while in the Visual Basic Editor.
Unit 2 Creating User Defined Functions

Creating a Function Procedure

While Excel Worksheet functions can be called within the code window there may be times when none of these functions meet your needs. You may also wish to simplify or obscure a complex function that has already been written for the benefit of the end user. This is when a user-defined function can be created.

Unlike a sub procedure, a function procedure only returns a value. It cannot move around a workbook, select worksheets, select cells, change properties nor apply methods to objects. Like the regular Excel and VBA functions (eg. SUM, COUNT, LOOKUP, IF, PMT, DATE, etc...), they are limited to carrying out a calculation and returning the result.

A function is enclosed by the statements Function and End Function. The function procedure must have a name that is often followed by arguments inside brackets. The arguments are variables that the function needs to calculate and resolve to a value.
Once written in the code window, a function can then be called in Excel by simply typing the name of the function after an equals sign, just as you would any other Excel function. If you are using Excel 2007 or greater, the function name should be suggested in the formula drop-down.
Function procedures have the following syntax:
	[Public/Private] Function FunctionName ([argument list]) [As <Type>]

[Statement block]

[FunctionName = <expression>]

End Function

Public indicates procedure can be called from within other modules. It is the default setting

Private indicates the procedure is only available to other procedures in the same module.

The As clause sets the data type of the function’s return value.

To create a function procedure:
· Create or display the module to contain the new Function procedure

· Click in the Code window

· Type in the word Function followed by a space and the Function name

Press Enter and VB places the parenthesis after the name and inserts the End Function line.

Or display the Add Procedure dialog box (as in Creating a Sub Procedure):

· Open the Insert menu

· Select Procedure.
Notes

The Add Procedure dialog box appears (as seen in Creating a Sub Procedure):

· Type the name of the procedure in the Name text box

· Select Function under Type
· Make the desired selection under Scope
· Click OK.

Below is an example of a basic function procedure:

[image: image36.png]
Calling a UDF
A sub procedure or function is called from the point in another procedure where you want the code to execute. The procedure being called must be accessible to the calling procedure. This means it must be in the same module or be declared public.

Below is an example of calls to Sub and Function procedures:

[image: image2]
When passing multiple arguments (as in the function procedure above) always separate them with commas and pass them in the same order as they are listed in the syntax.
Using a function within an Excel Workbook

As well as being called by procedures functions can also be used from within an Excel worksheet. For example, a commission function typed into the code window can be used in a worksheet to calculate the correct commission for a sales value.
First the code for Commission function is typed within a new Module named as MyFunctions:

Function Commission(Mkup As Currency)

 If Mkup >= 1000 Then

 Commission = Mkup * 0.1

 ElseIf Mkup >= 500 Then

 Commission = Mkup * 0.05

 ElseIf Mkup >= 100 Then

 Commission = Mkup * 0.01

 Else

 Commission = 0

 End If

End Function
The Mkup argument refers to the difference between selling and dealer price to which the commission calculation is applied.

To use this function select a blank cell and click the Formulas tab, Insert Function and choose the function from the User-Defined category.
[image: image37.jpg]
[image: image38.jpg]
Select the Mark Up cell or type J10 and press OK to enter the commission result. The same result can be achieved by typing:

=commission(J10)

Into the blank commission cell.

Unit 3 Message Boxes and Input Boxes

Adding Message Boxes
The MsgBox Function can be used to display messages on the screen and prompt for a user’s response.
The MsgBox Function can display a variety of buttons, icons and custom title bar text.
The MsgBox Function can be used to return a constant value that represents the button clicked by user.
The MsgBox Function syntax is as follows:
	MsgBox(prompt[, buttons] [, title] [, helpfile, context])

MyResponse = MsgBox (“Print the new sales report?”, 36, _

“Print Sales Report”)

MyResponse = MsgBox (“Print the new sales report?”, _

vbYesNo + vbQuestion, “Print Sales Report”)

Both MsgBox Functions above produce a message box with 2 buttons, a text message, an icon and a title as shown below:
[image: image39.jpg]
Another example of using the message box is to return a value:
Sub Example()

Dim X As Integer

X = 2

MsgBox "The Value of X is " & Str(X)

End Sub
The Msgbox message must be a string (text), hence the Str() function is required to convert an integer to a string which is concatenated with the first string using the & operator.

[image: image40.jpg]

The MsgBox Function has the components described below:
	prompt
	Required. It is a string expression displayed as the message in the dialog box. The maximum length of prompt is approximately 1024 characters. If prompt consists of more than one line, you can separate the lines by concatenating and using carriage return code vbCrLf.

	buttons
	Optional. Numeric expression that defines the set of command buttons to display, the icon style to use, the identity of the default button, and the modality of the message box. Can be specified by entering a vbConstant, the actual numeric value of the constant or the sum of constants. If omitted, the default value for buttons is 0

	title
	Optional. String expression displayed in the title bar of the dialog box. If you omit title “Microsoft Excel” is the default title

	helpfile
	Optional. String expression that identifies the Help file to use for the input box. If helpfile is provided, context must also be provided.

	context
	Optional. Numeric expression that identifies the appropriate topic in the Help file related to the message box

The values and constants for creating buttons are shown below:

	Constant
	Value
	Description

	vbOKOnly
	0
	OK button only (default)

	vbOKCancel
	1
	OK and Cancel buttons

	vbAbortRetryIgnore
	2
	Abort, Retry, and Ignore buttons

	vbYesNoCancel
	3
	Yes, No, and Cancel buttons

	vbYesNo
	4
	Yes and No buttons

	vbRetryCancel
	5
	Retry and Cancel buttons

The values for creating icons are shown below:

	Constant
	Value
	Description

	vbCritical
	16
	Display the Stop icon

	vbQuestion
	32
	Display the Question icon

	vbExclamation
	48
	Display the Exclamation icon

	vbInformation
	64
	Display the Information icon

The values for setting the default command button are shown below:

	Constant
	Value
	Description

	vbDefaultButton1
	0
	First button set as default (default)

	vbDefaultButton2
	256
	Second button set as default

	vbDefaultButton3
	512
	Third button set as default

	vbDefaultButton4
	768
	Fourth button set as default

The values for controlling the modality of the message box are shown below:

	Constant
	Value
	Description

	vbApplicationModal
	0
	Application modal message box (default)

	vbSystemModal
	4096
	System modal message box

	vbMsgBoxHelpButton
	16384
	Adds Help button to the message box

	VbMsgBoxSetForeground
	65536
	Specifies the message box window as the foreground window

To display the OK and Cancel buttons with the Stop icon and the second button (Cancel) set as default, the argument would be:

273 (1 + 16 +256).
It is easier to sum the constants than writing the actual values themselves:

vbOKCancel, vbCritical, vbDefaultButton2.

When adding numbers or combining constants, for the button argument, select only one value, from each of the listed groups.

[image: image41.png]Notes

	

	

	

	

	

Return Values

The MsgBox Function returns the value of the button that is clicked. Again this can be referenced by the number or the corresponding constant.
The Return values of the corresponding constants are as follows:

	Button Clicked
	Constant
	Value Returned

	OK
	vbOK
	1

	Cancel
	vbCancel
	2

	Abort
	vbAbort
	3

	Retry
	vbRetry
	4

	Ignore
	vbIgnore
	5

	Yes
	vbYes
	6

	No
	vbNo
	7

The return value is of no interest when the MsgBox only displays the OK button.
In this case just call the MsgBox Function with the syntax used to call a sub procedure as shown below:

	MsgBox (“You must enter a number”, vbOKOnly, “Attention”)
Or

MsgBox “You must enter a number”

[image: image42.png]Notes

	

	

	

	

	

Using Input Boxes

The InputBox Function prompts the user for a piece of information and returns it as a string.
The syntax of a InputBox Function is as follows:

	InputBox (prompt[, title] [, default] [, xpos] [, ypos] [, helpfile, context])

strEmpID = InputBox (“Please enter your Employee ID :”, “Employee ID Entry”)

In the example the return value of the function is being stored in a variable called strEmpID.
[image: image43.png]
If OK is clicked, the function returns the contents of the text box or a zero-length string, if nothing is entered.

If the user clicks Cancel, it returns a zero-length string, which may cause an error in the procedure if a value is required.
Notes

	

	

	

	

	

	

	

	

The ImputBox Function has the components described below:

	prompt
	Required. String expression displayed in the dialog box. The maximum length of prompt is approximately 1024 characters.

	title
	Optional. String expression displayed in the title bar of the dialog box. If you omit title “Microsoft Excel is the default title.

	default
	Optional. String expression displayed in the text box as the default response. If you omit default, the text box is displayed empty.

	xpos
	Optional. Numeric expression that specifies, in twips, the horizontal distance of the left edge of the dialog box from the left edge of the screen. If xpos is omitted ypos must also be omitted.

	ypos
	Optional. Numeric expression that specifies, in twips, the vertical distance of the upper edge of the dialog box from the top of the screen.

	helpfile
	Optional. String expression that identifies the Help file to use for the Input box. If helpfile is provided, context must also be provided.

	context
	Optional. Numeric expression that identifies the appropriate topic in the Help file related to the Input box

A twip is equal to 1/20th of a point.
How to Declare and Use Object Variables
You can also use variables to reference objects in order to work with their properties, methods and events. Any Excel object such as Worksheet, Chart, Range or Cell can be represented and accessed using a variable name.
The Object Variable syntax is as follows:

	Dim/Public/Private/Static VariableName [As <Objecttype>]

Dim SalesRange As Range

Public wsSheet As Worksheet

Assigning values to object variables requires the keyword Set:

	Set VariableName = Objectname

Set SalesRange = ActiveSheet.Range(“A1:F12”)

Set wsSheet = Worksheet (“Sales 2006”)

Once an object is assigned to an object variable, the object can be referenced by its variable name. Object variables are used to avoid typing lengthy object references.
Unit 4 Handling Errors

Handling errors is another aspect of writing good code. VBA allows you to enter instructions into a procedure that directs the program in case of an error.

Successfully debugging code is more of an art than a science. The best results come from writing understandable and maintainable code and using the available debugging tools. When it comes to successful debugging, there is no substitute for patience, diligence, and a willingness to test relentlessly, using all the tools at your disposal.

Writing good error handlers is a matter of anticipating problems or conditions that are beyond your immediate control and that will prevent your code from executing correctly at run time. Writing a good error handler should be an integral part of the planning and design of a good procedure. It requires a thorough understanding of how the procedure works and how the procedure fits into the overall application. And, writing good procedures is an essential part of building solid Microsoft Office solutions.

Good error handling should keep the program from terminating when an error occurs.

Defining VBA's Error Trapping Options
The error trapping mechanism can be turned on, off or otherwise modified while developing a project.

To set the Error Handling options:

· Open the Tools menu

· Select Options
The Options dialog box appears.

The Error Trapping options are explained below:

	Break on

All Errors
	Causes program to enter Break mode and display an error message regardless of whether you have written code to handle the error.
This option turns the error handling mechanism off and should be used for debugging only

	Break in

Class Module
	Causes program to enter Break mode and display an error message when an unhandled error occurs within a procedure of a class module such as a User Form.

If the Debug button is clicked in the error message window, the Code window will display the line of code that generated the error highlighted. Should be used for debugging only.

	Break on

Unhandleded Errors
	Causes the program to enter Break mode and display a message when an unhandled error occurs.
This is the setting that should be selected before distributing your application.

For a list of trappable errors in Excel search Help for Trappable Errors Constants while in the Visual Basic Editor.

A list of the error numbers and their descriptions appears.

Capturing Errors with the On Error Statement
In a procedure, you enable an error trap with an On Error statement. If an error is generated after this statement in encountered, the Error handler takes over and passes control to what the On Error statement specifies.

The Error-Handling syntax is as follows:

	On Error <branch instruction>

On Error GoTo ErrorHandler

On Error Resume Next

Once a On Error statement has trapped an error, the error needs to be handled. Below are the 3 basic styles that VBA uses for handling errors:
	Write an Error handler
	This uses the On Error GoTo statement. It would include statements to handle one or more errors for the procedure.

	Ignore the Error
	If the error is inconsequential, use the On Error Resume Next statement to both trap and handle the error. The program continues on the next line of code.

	Use in-line error handling
	Use the On Error Resume Next statement to trap the error. Then enter code to check for errors immediately following any statements expected to generate errors.

On Error GoTo 0
This statement disables the error-handling for the procedure at least until another On Error statement is encountered. This is an alternative to changing the Error Trapping settings to Break on All Errors as it only affects the procedure it is in. Once the issue is resolved remove the statement from the procedure.

Error trapping is defined on a procedure-by-procedure basis. VBA does not allow you to specify a global error trap.

Determining the Err Object
When an error occurs, VBA uses the Err object to store information about that error. The Err object can only contain information about one error at a time
The properties of the Err object contain information such as the Error Number, Description, and Source.
The Err object's Raise method is used to generate errors, and its Clear method is used to remove any existing error information.
Using the Raise methods to force an error can help in error testing routines.

The following statement generates a “Division By Zero” error message:

	Err.Raise 11

Coding an Error-Handling Routine
The On Error Go To statement is used to branch to a block of code within the same procedure which handles errors. This block is known as the error-handling routine and is identified by a line label.
The routine is always stored at the bottom of the procedure, preceded by an Exit statement that prevents the routine from being executed unless an error has occurred.

Common line labels used to identify an Error-handling routine are “ErrorHandler” and “EH”. You can use one of these or create a personal one to handle all your error-handling routines.
Line labels only have to be unique within the procedure.

The benefit of using this style is that all the error-handling logic is at the bottom rather than being mixed up with the main logic of the procedure making the procedure easier to read and understand.

The example below illustrates a error-handling routine for a sub procedure:

	Sub RunFormula()

On Error GoTo ErrorHandler

Dim A As Double

Dim B As Double

A = InputBox("Type in the value for A")

B = InputBox("Type in the value for B")

MsgBox A / B

Exit Sub

ErrorHandler:

If Err.Number = 11 Then

 B = InputBox(Err.Description & " is not allowed. Enter a non-zero number.")

 Resume

Else

 MsgBox "Unexpected Error. Type " & Err.Description

End If

End Sub

When an execution has passed into an error routine the following list shows how to specify which code to be used next:

	Resume
	Execution continues on the same line within the procedure that caused the error.

	Resume Next
	Execution continues on the line within the procedure that follows the line that caused the error.

	Resume <Line Label>
	Execution continues on the line identified by the line label. This usually points to another routine within the procedure that performs a “clean-up” be releasing variables and deleting temporary files.

	End Sub / End Function
	Used to exit the procedure normally by reaching the End Sub or end Function command

	Exit Sub / Exit Function
	Immediately exits the procedure in which it appears. Execution continues with the statement following the statement that called the procedure.

Notes

	

	

	

	

	

	

	

	

	

	

	

	

Using Inline Error Handling
Using this method you place the code to handle errors directly into the body of the procedure, rather than placing it at the end of the routine.
To do this, place the On Error Resume Next statement into the procedure. The error handling code is then placed immediately after the line where the code is expected to cause error. This method may be simpler to use in very long procedures where two or more errors are anticipated.
	Sub ProcFileOpen()

On Error Resume Next

Open "C:\My Documents\Sales2006.xls" For Input As #1

Select Case Err

 Case 53

 MsgBox "File not found: C:\My Documents\Sales2006.xls"

 Case 55

 MsgBox "File in use: C:\My Documents\Sales2006.xls"

 Case Else

 MsgBox "Err Number: " & Err.Number & vbLf & _

 "Error Descriptoion: " & Err.Description

End Select

Err.Clear

End Sub

Notes

	

	

	

	

	

	

	

	

	

Unit 5 Creating Forms and Controls

Defining UserForms
Dialog boxes are used in applications to interface with the user. VBA allows you to create custom dialog boxes that can display information or retrieve information from the user as required. These are known as UserForms or just Forms.

A UserForm serves as a container for control objects, such as labels, command buttons, combo boxes, etc. These controls depend on the kind of functionality you want in the form. When a new UserForm is added to the project, the UserForm window appears with a blank form, together with a toolbox containing the available controls. Controls are added by dragging icons from the toolbox to the UserForm. The new control appears on the form with 8 handles that can be used to resize the control. The grid dots on the form help align the controls on the form.
To add a UserForm to a project:

In the Visual Basic Editor, select the desired Project name in the Project Explorer.

To insert a UserForm do one of the following:

· Open the Insert menu

· Select UserForm.

OR

· Right-click the project name

· Select Insert and choose UserForm.

A blank user form appears together with the toolbox.

Press F7 to display the code window of the selected form and F4 to display the Properties window.
Utilising the Toolbox
While working on a form the toolbox is displayed but becomes hidden when another window in the Visual Basic Editor is selected. Controls are added to forms to build a desired interface and add functionality.

The default set of controls, from left to right, on the above toolbox are described below:
	Select Objects
	Makes the mouse behave as a pointer for selecting a control on a form.

	Label
	Creates a box for static text

	Text Box
	Creates a box for text input or display.

	Combo Box
	Creates the combination of a drop-down list and textbox. The user can select an option or type the choice.

	List Box
	Creates a scrollable list of choices

	Check Box
	Creates a logical check box

	Option Button
	Creates an option button that allows exclusive choice from a set of options.

	Toggle Button
	Creates a toggle button that when selected indicates a Yes, True or On status.

	Frame
	Creates a visual or functional border.

	Command Button
	Creates a standard command button.

	Tab Strip
	Creates a collection of tabs that can be used to display different sets of similar information.

	MultiPage
	Creates a collection of pages. Unlike the Tab Strip each page can have a unique layout.

	Scroll Bar
	Creates a tool that returns a value of for a different control according to the position of the scroll box on the scroll bar

	Spin Button
	Creates a tool that increments numbers.

	Image
	Creates an area to display a graphic image.

	RefEdit
	Displays the address of a range of cells selected on one or more worksheets.

Double-click a toolbox icon and it remains selected allowing multiple controls to be drawn.
Using UserForm Properties, Events And Methods
Every UserForm has its own set of properties, events and methods. Properties can be set in both the Properties window and through code in the Code window.

Properties

All forms share the same basic set of properties. Initially every form is the same. As you change the form visually, in the UserForm window, you are also changing its properties. For example if you resize a form window, you change the Height and Width properties.

The following list describes the more commonly used properties of a UserForm:

	Property
	Description

	BackColor
	Sets the background colour of a form.

	BorderStyle
	Sets the border style for the form.

	Caption
	Sets the form’s title in the title bar.

	Enabled
	Determines whether the form can respond to user-generated events.

	Height
	Sets the height of the form.

	HelpCOntextID
	Associates a context-sensitive Help topic with a form.

	MousePointer
	Sets the shape of the mouse pointer when the mouse is positioned over the form.

	Picture
	Specifies picture to display in the form.

	StartUpPosition
	Sets where on the screen the form will be displayed.

	Width
	Sets the width of the form.

Notes

	

	

	

	

	

Events
All UserForms share a set of events they recognize and to which they respond by executing a procedure. You create the code to execute for a form event the same way as you create other event procedures:
· Display the code window for the form
· Select the UserForm object

· Select the event from the Procedure list.

[image: image3]
Methods

UserForms also share methods that can be used to execute built-in procedures. Methods are normally used to perform an action in the form.

The three most useful methods are explained below:

	Show
	Displays the form; can be used to load a form if not already loaded.

	Hide
	Hides the form without unloading it from memory.

	Unload
	Removes the form from memory.

Use the keyword Me in the UserForm’s code module instead of its name to refer to the active form and access its properties and methods.
Understanding Controls
A control is an object placed on a form to enable user interaction. Some controls accept user input while others display output. Like all other objects controls can be defined by their properties, methods and events.

Below is an example of a form containing commonly used controls:

Control properties can be viewed and assigned manually via the Properties window. While each type of control is unique many share similar attributes.

The following list contains properties that are common among several controls:

	Property
	Description

	ControlTipText
	Specifies a string to be displayed when the mouse pointer is paused over the control

	Enabled
	Determines if the user can access the control.

	Font
	Sets the control text type and size.

	Height
	Sets the height of the control

	MousePointer
	Sets the shape of the mouse pointer when the mouse is positioned over the object

	TabIndex
	Determines the order in which the user tabs through the controls on a form.

	TabStop
	Determines whether a control can be accessed using the tab key.

	Visible
	Determines if a control is visible

	Width
	Sets the width of a control.

All controls have a default property that can be referred by simply referencing the name of the control. In one example the Caption property is the default property of the Label control.
This makes the two statements below equivalent:
	Label1 = “Salary”

Label1.Caption = “Salary”

As with forms many controls respond to system events.
The following are the more common events that controls can detect and react to:

	Click
	Occurs when the user clicks the mouse button while the pointer is on the control

	GotFocus
	Occurs when a control receives focus

	LostFocus
	Occurs when a control loses focus

	MouseMove
	Occurs when a user moves the mouse pointer over a control.

Naming Conventions
It’s a good practice to use a prefix that identifies the control type when you assign a name to the control.

Below is a list of several control object name prefix conventions:

	Object
	Prefix

	Check box
	chk

	Combo box
	cbo

	Command button
	cmd

	Frame
	fra

	Image
	img

	Label
	lbl

	List box
	lst

	Option button
	opt

	Text box
	txt

Setting Control Properties in the Properties Window
Each control has a set of properties that can be set in the design environment using the Properties window. Categories for the property window vary per object.

Frequently used categories are behaviour, font, and position.
To set Control Properties in the Properties Window:
	
	· Display the Properties Window
· Click the Alphabetic tab to display properties in alphabetic order OR
· Click the Categorized tab to display properties by category

To change a property setting:

· Select the desired control in the UserForm window or from the drop down list in the Properties window

· Scroll to the desired property and use the appropriate method to change the setting in the value column.

Notes

	

	

	

	

	

	

	

Using the Label Control
The Label control is used to display text on a form that cannot be modified by the user.

It can be modified in the procedure by using the Caption property.

Below are some unique properties of the Label control:

	Property
	Description

	TextAlign
	Determines the alignment of the text inside the label.

	AutoSize
	Determines if the dimensions of the label will automatically resize to fit the caption.

	Caption
	Sets the displayed text of the field.

	WordWrap
	Determines if a label expands horizontally or vertically as text is added. Used in conjunction with the AutoSize property.

Using the Text Box Control
The Text Box control allows the user to add or edit text. Both string and numeric values can be stored in the Text property of the control.

Below are some important properties of the Text Box control:

	Property
	Description

	MaxLength
	Specifies the maximum number of characters that can be typed into a text box. The default is 0 which indicates no limit.

	MultiLine
	Indicates if a box can contain more than one line.

	ScrollBars
	Determines if a multi-line text box has horizontal and/or vertical scroll bars.

	Text
	Contains the string displayed in the text box.

Using the Command Button Control
Command buttons are used to get feedback from the user. Command buttons are among the most important controls for initiating event procedures.

The most used event associated with the Command Button is the Click event.
Below are two unique properties of the Command button control:

	Property
	Description

	Cancel
	Allows the Esc key to “click” a command button. This property can only be set for one command button per form.

	Default
	Allows the Enter key to “click” a command button. This property can only be set for one command button per form.

Using the Combo Box Control
The Combo Box control allows you to display a list of items in a drop-down list box. The user can select a choice from the list or type an entry.

The items displayed on the list can be added in code using the AddItem method.

Below are some important properties of the Combo Box control:

	Property
	Description

	ListRows
	Sets the number of rows that will display in the list.

	MatchRequired
	Determines whether the user can enter a value that is not on the list.

	Text
	Returns or sets the text of the selected row on the list.

Some important methods that belong to the Combo Box are explained below:
	AddItem item_name, index
	Adds the specific item to the bottom of the list.

If the index number is specified after the item name its added to that position on the table

	RemoveItem index
	Removes the item referred to by the index number.

	Clear
	Clears the entire list.

Using the Frame Control
The Frame control is used to group a set of controls either functionally or logically within an area of a UserForm. Buttons placed within a frame are usually related logically so setting the value of one affects the values of others in the group.
Option buttons is a frame are mutually exclusive, which means when one is set to true the others will be set to false.
Using Option Button Controls
An Option Button control displays a button that can be set to on or off. Option buttons are typically presented within a group in which one button may be selected at a time.

The Value property of the button indicates the on and off state.

Using Control Appearance
The UserForm toolbar provides several tools that are used to manipulate the appearance of the controls on the form.
Many of the tools on the UserForm toolbar require the user to select multiple controls. To do this:

· Click the first control
· Hold down the Shift key

· Click any additional controls

Controls will be aligned or sized according to the first control selected. The first control selected is identified by its white selection handles.
Below is an illustration of a UserForm with multiple controls selected:

Below is an illustration of the UserForm toolbar together with the options for Align, Centre and Make Same Size.

Setting the Tab Order
The tab order is the order by which pressing the Tab key moves focus from control to control on the form. While the form is being built the tab order is determined by the order in which you place the controls on the form. If the controls are rearranged you may nee to manually reset the tab order. To set the tab order:

	
	· View the desired form in the UserForm window

· Open the View menu

· Choose Tab Order
· Select the desired control from the list

· Click Move Up to move the control up the list

· Click Move Down to move the control down the list

Although Labels are listed on the Tab Order dialog box, they are not included in the tab order.

Filling a Control
A list box or combo box control placed on the form is not functional until the data that will appear on the list is added.

This is done by writing code in the sub procedure associated with the Initialize event. This triggers when the form is loaded. The AddItem method is used to specify the text that appears in the list.

The code below shows items added to a combo box named cboCourses:

	With cboCourses

.AddItem “Excel”
.AddItem “Word”

.AddItem “PowerPoint”

End With

Adding Code to Controls
As seen, forms and their controls are capable of responding to various events. Adding code to forms and control events are accomplished the same way as adding code to events of other objects.

How to Launch a Form in Code
The Show method of the form object is used to launch a form within a procedure.
Creating a procedure to launch a form enables you to launch a form from a toolbar, or menu as well as from an event such as opening a workbook.

Below is the syntax used to launch a form:
	FormName.Show

frmNewData.Show

Appendix: Using the PivotTable Object

Understanding PivotTables
A pivot table is a table that can be used to summarize data from a worksheet or an external source such as a database.

A Pivot table can only be created using the Pivot table wizard.

Creating A PivotTable
The wizard makes the creation of the pivot table quite easy. By following a series of prompts the wizard takes over and creates the pivot table for you. To do this:
2003 Version
· Pull down the Data menu

· Select Pivot Table and Pivot Chart Report (See 2003 Procedure below)
2007/2010/2013 Version

Insert Ribbon > PivotTable Button (Far left)
 (See 2007/10/13 Procedure on next Page)
2003 Pivot Wizard Procedure
The PivotTable and PivotChart Wizard – Step 1 of 3 dialog box appears.

	
	· Select Where the data is that you want to analyze
· Select What kind of report you want to create
· Click Next.

The PivotTable and PivotChart Wizard – Step 2 of 3 dialog box appears.

	
	· The selected range appears in the Range window

· Change the range if needed

· Click Next.

The PivotTable and PivotChart Wizard – Step 3 of 3 dialog box appears.

	
	· Select Where do you want to put the Pivot Table

· Click Finish
· Drag the field buttons to the desired page, row, column and data fields.

2007/2010/2013 Procedure
	[image: image4.png]
	· Select Where the data is that you want to analyze
· Select where you want to create the report
· Click OK.

	
	

	[image: image5.png]
	· Drag the field buttons to the desired page, row, column and data fields.

	
	

Using the PivotTable Wizard Method
The PivotTable Wizard method of the Worksheet object can be used to create a pivot table in code without displaying the wizard.

The PivotTable Wizard method has many arguments. The main ones are described below:
	Argument
	Definition

	SourceType
	The source of the PivotTable data. The SourceData argument must also be specified when using this.

	SourceData
	A range object that specifies the data for the PivotTable.

	TableDestination
	A range object indicating where the table will be placed.

	TableName
	The name by which the table can be referred.

An example of the PivotTable Wizard method is shown below:

	Sub MakePivot ()

Dim DataRange As Range

Dim Destination As Range

Dim PvtTable As PivotTable

Set Destination = Worksheets("Sales Summary").Range("A12")

Set DataRange = Range("A9", Range("J9").End(xlDown))

ActiveSheet.PivotTableWizard SourceType:=xlDatabase, _

SourceData:=DataRange, TableDestination:=Destination, TableName:="SalesInfo"

End Sub

This code runs the PivotTable wizard, capturing the data in the current worksheet then placing a pivot table in the worksheet called “Sales Summary”. In this instance the PivotTable contains no data, because the row, column and data fields haven’t been assigned.
Using PivotFields
Once a PivotTable is created pivot fields must be assigned. The PivotFields collection is a member of the PivotTable object containing the data in the data source with each Pivot Field getting its name from the column header. PivotFields can be set to page, row, column and data fields in the PivotTable.

In the Sales – April 2004 the fields are: Sales Date, Make, Model, Type, Colour, Year, VIN Number, Dealer Price, Selling Price, Salesperson.
The table below lists the PivotTable destinations for PivotFields.
	Destination
	Constant

	Row Field
	xlRowField

	Column Field
	xlColumnField

	Page Field
	xlPageField

	Data Field
	xlDataField

	To Hide A Field
	xlHidden

The following syntax shows how a PivotField is defined by setting its Orientation property to the desired destination column:
	.PivotTables(Index).PivotFields(Index).Orientation = Destination

.PivotTables(“SalesInfo”).PivotFields(“Salesperson”).Orientation = xlPageField

PivotTables(“SalesInfo”).PivotFields(“Colour”).Orientation = xlRowField

To optimize the setting of the Pivot Table orientation use the With Statement:
	Set PvtTable = Sheets(“Sales Summary”).PivotTables(“SalesInfo”)
With PvtTable

 .PivotFields(“Salesperson”).Orientation = xlPageField

 .PivotFields(“Year”).Orientation = xlRowField

 .PivotFields(“Make”).Orientation = xlColumnField

 .PivotFields(“Selling Price”).Orientation = xlDataField

End With

Notes

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Excel VBA – Quick Reference Guide
	Subject
	Examples / Notes

	Building Blocks
	VBA Terminology
	Objects (eg Worksheet)

Property (eg Name)

Method (eg Close)

Procedure

Container Objects (eg Workbook)

Collection Objects (eg Worksheets)

Type “Microsoft Excel Objects” in VBE Help to get the Excel object Hierarchy

	
	Visual Basic Editor (VBE)
	The Projects window

The Properties window

The Code window

Alt-F11 – back and forth between VBE and Excel

	
	Changing object properties
	Using the Properties window

OR

Using code:
Object.property = newvalue

Eg:
ActiveSheet.Name = “New Sheet”

	
	Using methods
	Syntax:
object.method

Eg:

ActiveCell.Select

ActiveSheet.Protect

	
	Coding to react to events
	In the code window, select the object from the top left drop down menu and the Event from the top right drop down menu Eg:

Private Sub Worksheet_Activate()

End Sub

	
	Msgbox
	Msgbox(“This is my message”)

vbCrLf (Carriage return and Linefeed)

Allows text displayed on a MsgBox to appear on multiple lines

	
	Adding Buttons
	To toolbar (right click on toolbar and choose Customise)

To worksheet (display Forms or Visual Basic toolbars)

	
	Object Browser
	In VBE, select View / Object Browser to explore the ‘library’ of VBA code

	Subject
	Examples / Notes

	Dealing with Data
	Data Types
	Byte, Boolean, Integer, Long, Single, Double, String, Date, Currency. .Also Variant and Object
Type “Data Type Summary” in VBE Help to get the sizes and ranges for all data types

	
	Variables
	Declaring variables:

Implicitly by just using them

Explicitly (Dim variable as type)

Initialising (i.e. giving a variable a value):

UserName = “My Name”

Deptnumber = 234

	
	Scope
	Procedure Level scope:

Private Sub Worksheet_Activate()

Dim MyVariable As String

 MyVariable = "Jonathan"

End Sub

Module Level scope:

Option Explicit

Dim MyVariable As String

Private Sub Worksheet_Activate()

 MyVariable = "Jonathan"

End Sub

Public scope:

Option Explicit

Public MyVariable As String

Private Sub Worksheet_Activate()

 MyVariable = "Jonathan"

End Sub

	
	Modules
	Insert menu to insert new module

	
	Procedures
	Add menu to add new procedure, or type it:

Sub MyProceture

End Sub

	
	Calling Procedures
	
Call MyProcedure

	Subject
	Examples / Notes

	Controlling Program Flow
	Decision Structures
	If X = Y Then

Elseif X = Z Then

Else

End If

	
	
	Select Case username

Case “Liz”

Case “Jonathan”

End Select

	
	Loop Structures
	Fixed Iterations
For ThisCount = 1 to 10

Next ThisCount

	
	
	Variable Iterations

For Each SheetVar In Worksheets

(for Collections)

Next

Do While / Until X = Y

Loop

	Subject
	Examples / Notes

	More User Interaction
	Creating a Custom User Form
	In VBE, select Insert and UserForm

	
	Adding Controls
	Use the control toolbox

	
	Naming Discipline
	With Forms and Buttons and other controls…

Change the name (use the Properties window) – eg:

frmMainCommands

txtUserName

cmdCloseButton

	
	Adding code to forms/controls
	Double-click on the object

Refer to objects in your code, eg:

txtUserName.Value = “Some Text”

	
	Responding to Events
	In Code Window for forms, use top left drop down menu to select a control, and top right drop down menu shows events

Eg:

Private Sub cmdEnterName_Click()

Range("E1").Value = txtUserName

End Sub

Or

Private Sub
txtUserName_AfterUpdate()

If txtName.Value>11 And txtName.Value<15 Then

 Exit Sub

Else

 MsgBox ("Not a valid Dept number")

 txtUserName.Value = ""

End If

End Sub

	Subject
	Examples / Notes

	Debugging and Handling Errors
	Types of Error
	Compile Time

Run Time

Logical

Type “Trappable Errors” in VBE Help to get the list of all trappable errors and their descriptions

	
	Debugging Tools
	On the Debug menu:

Breakpoint

On the View menu:

Locals Window
(all variables)

Watch Window
(your choice of

variables)

Immediate Window

	
	On Error
	
On Error Goto Label

Label:

(must be left justified & with

colon)

On Error Resume Next

	Subject
	Examples / Notes

	Extras
	Line continuation
	Workbooks.Open Filename:= _

 "c:\MyDocuments\Excel VBA\Courses2005.xls"

	
	MsgBox buttons
	Resp = MsgBox(“Do you want to continue?”, _

vbYesNoCancel)

If Resp = 6 then

Msgbox(“You hit ‘Yes’ didn’t you?”)

Elseif Resp = 7 then

Msgbox(“You hit ‘No’ didn’t you?”)

Elseif Resp = 2 then

Msgbox(“You hit ‘Cancel’ didn’t you?”)

End If

Type “VB Constants” in VBE Help to view the selection of VB Constants available

	
	Breaking Out
	Press Ctrl-Break keys to interrupt code manually (or break out of an unending loop)

	
	Stop
	Alternative to Breakpoint

Sub Import()

Stop

End Sub

	
	Other useful code
	Application.Dialogs(xlDialogOpen).Show
ActiveWindow.ActivateNext

Stop Screen Flickering

Running VBA code may cause the screen to flicker. To switch off the screen until the program is run enter the following code line:

Application.ScreenUpdating = False
Screen comes on automatically on completion of the program.
To Save a Workbook and close an Application

ActiveWorkbook.Save

ActiveWorkbook.SaveAs “Employees.xls” (Save Workbook with different name)

Application.Quit (Quit the application. Code can be used in all Office applications

[image: image6.png][image: image7.png][image: image8.png][image: image9.png]
Intermediate

Excel VBA

Microsoft Application Series

	Best STL

 Courses never cancelled: guaranteed

 Last minute rescheduling

 24 months access to Microsoft trainers

 12+ months schedule

 UK wide delivery

www.microsofttraining.net

24 months

Module1

Public X

Private Mod1

Procedure A

Static A1

Dim A2

Procedure B

Dim B1

Form1

Public Y

Private Frm1

Form2

Private Frm2

Procedure D

Static D1

Dim D2

Procedure C

Dim C1

Function procedure

Sub procedure

Object

Procedure

Bring to front

Make Same size

Centre

Zoom

Align

Send to back

Group

Ungroup

Version 2.1

