[image: image1.png]

Excel VBA Advanced

[image: image13.jpg]CERTIFIED

Application
Specialst

www.microsofttraining.net

The UK's number 1 provider for Microsoft Office training & consultancy

· Courses never cancelled: Guaranteed!

· Last minute rescheduling

· 12+ months schedule ahead

· Online 60 second booking

· UK wide delivery and London’s largest schedule

[image: image9.png]

[image: image10.png]

[image: image11.png]Microsoft
Office

Specialist

[image: image12.png]

E&OE

Best Training reserves the right to revise this publication and make changes from time to time in its content without notice.
Contents

1Working with Procedures

1Procedure Arguments

1Passing Arguments

2Optional Arguments

3Default Values

3Passing arguments by value and reference

5Working with Ranges

5What is a Range?

5Range Property of the Application

5Cells Property

6The SpecialCells Method

7Naming Ranges

8Events

9Workbook Events

10Worksheet Events

11Working with Arrays

11What is an Array

11Array Sizes

12One Dimensional Arrays

13Arrays with Multiple Dimensions

14A word about index numbers

15Ubound and Lbound

15Saving arrays in names

16Charts

16Creating charts from worksheet data

16Key Properties and methods of the chart object

17Creating Charts from Arrays

19Active X Data Objects

19Key Objects

19The Connection Object

20The RecordSet Object

21A word about the connection string

24Class Modules

24What can be done with Class Modules?

24Why use Class Modules?

24What is a Class?

25How Does a Class Module Work?

25Key Elements in a class module

25Property Get and Let Procedures

26Example of a Class Module

27Referring to user defined Objects in Code

27Using IntelliSense™

29Working with Collections

29The Collection Object

29Explicit creation of a collection

30Referring to a collection in a standard module

31Using the Collections Object Directly

32Programming Techniques

32Best Practice for Excel Programming

33Using Worksheet Functions

34A Word about VB functions

35Ascii Codes

35Inserting non printable characters into literal strings

35Controlling data entry into text boxes and other form controls.

35A complete list of all standard ASCII codes is given below.

Working with Procedures

Procedure Arguments

There are two types of procedure; sub procedures and function procedures. The difference between them is that function procedures return values, and sub procedures do not. Both sub procedures and function procedures accept arguments. An argument is simply a piece of information that the procedure is to process.

Passing Arguments

The arguments of a procedure are defined within the brackets after the procedure’s name. They are then processed within the procedure.

The following function accepts 2 string variables and then concatenates them together.

Function StringJoiner(Name1 As String, Name2 As String) As String

 StringJoiner = Name1 & Name2

End Function
It is then called from the following sub procedure, with the two arguments defined.
Sub RunStringJoiner()

 Dim strResult As String

 strResult = StringJoiner("Stephen ", "Williams")

 MsgBox strResult

End Sub
Optional Arguments

You can specify that some or all of the arguments in a procedure are optional.

This procedure has an optional argument strMessage

Sub OptArgument(Optional strMessage As String)

 If strMessage <> "" Then

 MsgBox strMessage
 Else

 MsgBox "I have nothing to say"

 End If

End Sub

It is called from the following procedure. The first line returns a message box with the word argument value hello as the message. The second has no value for the argument and returns the message “I have nothing to say”.
Sub CallOptArg()

 Call OptArgument("Hello")

 Call OptArgument

End Sub
Default Values

It is common to include a default value with an optional argument. This will be the value of the argument if it is omitted when the procedure is called.

Sub OptArgument(Optional strMessage As String = “I have nothing to say”)

 MsgBox strMessage

End Sub

The above procedure has exactly the same results as the previous example, but is clearly a lot simpler to code and understand.

Passing arguments by value and reference

By default, arguments in VBA are passed by reference. This means that if you pass a variable as an argument from one procedure to another then the called procedure is working with the exact same copy of the variable as the calling procedure. When you pass a variable by value, then the calling procedure makes a copy of the variable, hands that to the called procedure; but retains the original itself. As a result, the variable in the calling procedure is unaffected by the changes made in the calling procedure.

The following procedure sets a variable intVar to the value of 10 and then passes it to another procedure by reference. This procedure adds 10 to it and hands it back, where the final value of 20 is displayed in a message box.

Sub PassByRef()

 Dim intVar As Integer

 intVar = 10

 Call RecByRef(intVar)

 MsgBox intVar

End Sub
Sub RecByRef(IntArgument As Integer)

 IntArgument = IntArgument + 10

End Sub

In the following example the intVar is passed by value to the sub RecByRef. Here a copy of the variable is processed, which means it is not passed back to the calling procedure. As a result the message box returns the value 10

Sub PassByVal()

 Dim intVar As Integer

 intVar = 10

 Call RecByVal(intVar)

 MsgBox intVar

End Sub

Sub RecByVal(ByVal intArgument As Integer)

 intArgument = intArgument + 10

End Sub

The key is the argument in the called procedure

Sub RecByVal(ByVal intArgument As Integer)

The byVal keyword specifies that the argument has been passed by value; that is that it is a copy and that the original value will be retained after the called procedure has completed.
Working with Ranges

What is a Range?

When we refer to a range in Excel we mean either a singular cell, a rectangular block of cells, or a union of many rectangular blocks. In VBA Range is an object with its own properties and methods. Just to complicate things range can also be a property of the application object, the worksheet object and indeed the range object, where it refers to a specified range object

Range Property of the Application
You can use the range property of the application to refer to a range object on the active worksheet.

For example;

Range(“B2”)

Range(“A1:B7”)

Range(“A1:B3,E1:O9”)

Note the last example refers to a union, or non contiguous range.

Cells Property
The Cells Property of the range object can be used to specify the parameters in the range property to define a range object

For example the following refers to range A1:E5

Range (Cells(1,1), Cells (5,5))
The cells property can also be used to refer to particular cells within a range; or a range within a range.

The following refers to cell F9
Range (“D10:G20”).Cells (0,3)

You can also shortcut this reference thus

Range (“D10:G20”) (0,3)

The SpecialCells Method

The SpecialCells method allows certain types of cell to be identified within a range.

It has the following syntax:

SpecialCells(Type, Value)
The type argument specifies the cells to be included

	xlCellTypeAllFormatConditions
	 Cells of any format

	xlCellTypeAllValidation
	 Cells having validation criteria

	xlCellTypeBlanks
	 Empty cells

	xlCellTypeComments
	 Cells containing notes

	xlCellTypeConstants
	 Cells containing constants

	xlCellTypeFormulas
	 Cells containing formulas

	xlCellTypeLastCell
	 The last cell in the used range

	xlCellTypeSameFormatConditions
	 Cells having the same format

	xlCellTypeSameValidation
	 Cells having the same validation criteria

	xlCellTypeVisible
	 All visible cells

	xlCellTypeFormulas.
	 Cells containing formulas

	xlCellTypeLastCell.
	The last cell in the used range

	xlCellTypeSameFormatConditions.
	Cells having the same format

	xlCellTypeSameValidation.
	Cells having the same validation criteria

	xlCellTypeVisible.
	 All visible cells

This argument is used to determine which types of cells to include in the result
	xlErrors

	xlLogical

	xlNumbers

	xlTextValues

The following code will delete all the numbers in a worksheet, leaving only text data and formulae in place

Sub DeleteNumbersInworksheet()

 Cells.SpecialCells(xlCellTypeConstants, xlNumbers).ClearContents

End Sub
Naming Ranges

One of the most useful techniques in Excel is to name ranges. A named range can simplify code as it is possible to refer to the name and not the cell references

To create a named range we use the add method of the workbook’s names collection. The following code creates a named range called “NewName” on sheet2 of the active workbook on the range “E5:J10”

Sub AddNamedrange()

 Names.Add Name:="NewName", RefersTo:="=Sheet2!E5:J10"

End Sub

Alternatively it is possible to set a name by defining the name property of the range object.

Sub AddRangeNameProperty()

 Range("A1:V3").Name = "RangeName"

End Sub

Events

An event is “something that happens” to an object, and usually occurs when an object undergoes a change of state.
For instance when a workbook is selected, then its status changes from deactivated to activated and the activate event fires. Code can be embedded in special event procedures and will run whenever certain events occur.
The screenshot below shows how to select an object and then access the relevant event
[image: image2.png]@ File Edt View Insert Formst Debug Run Tools Add-Ins Window Help Type 3 question for help c.8 x
HE-J % B® 90)1 ak%FE 5 @ W
Project - VBAPrcject X[Toorkooor <] [oor
=) = [T option Explicit [rete
-8 VBAProject (Book1) |AddinUninstall
-85 Microsoft Excel Objects . [AnerxmExport E
) Sheet (Sheet) Private Sub Workbook_Open () |Afterxmimport
lpetorsCiose
End Sub [octoretrnt
lpeforexmexport
lpetorexmimport
Ipesctvate
ewsnest

Properties - ThisWorkbook.

Workbook Events

Events for the Workbook object occurs when the workbook is changed or a sheet in the workbook is changed.
Select the desired project in the Project-window of the VBE and activate the object ThisWorkbook by doubleclicking it. Any event procedures in the workbook will now be displayed in the Code-window on the right side of the screen. You can create a new event Procedure by selecting Workbook in the Object dropdown, and then select an event in the Procedure dropdown.

The main workbook events are:

· Activate (When the workbook is selected. Also fires when the workbook opens, after the open event)

· AddinInstall

· AddinUninstall

· BeforeClose (Can be used to “clean up” workbook before it closes. Also you can run the save method at this point to ensure the file always automatically saves any changes)

· BeforePrint

· BeforeSave

· Deactivate (Fires when another workbook or application is selected)

· NewSheet (when a new sheet is created)

· Open

· SheetActivate

· SheetBeforeDoubleClick

· SheetBeforeRightClick

· SheetCalculate

· SheetChange

· SheetDeactivate

· SheetSelectionChange

· WindowActivate

· WindowDeactivate
· WindowResize

Worksheet Events

In the worksheet dropdown you can access the following events

· Activate

· BeforeDoubleClick

· BeforeRightClick

· Calculate (Runs whenever a formula’s dependent cell value is changed, or when F9 is pressed.)

· Change

· Deactivate

· SelectionChange

Working with Arrays
What is an Array

An array can be regarded as a variable that can hold a collection of values which can be referenced by an index number. Typically an array is defined in the same way as a variable, with the difference that it is followed by brackets.

The following code contains an array that can hold 5 integers

Dim intArray(1 to 5) as integer

When creating an array it is necessary to specify its size (the number of elements that it can hold) and the number of dimensions contained by the array.
Array Sizes

An array’s size can be specified either when it is declared or later during the code’s execution. The former case creates a static array, the later a dynamic array.

A static array is an array that is sized in the Dim statement that declares the array.
Dim StatArray(1 To 100) As string
You can’t change the size or data type of a static array.
A dynamic array is an array that is not sized in the Dim statement. Instead, it is sized later with the ReDim statement.
Dim DynArray() As string
ReDim DynamicArray(1 To 100)
You can change the size of a dynamic array, but not the data type.

One Dimensional Arrays

The arrays considered so far are one dimensional, in that they have a simple row of variables. For example an array defined as;

Dim strArray(1-5) as string

Could be visualized as

	1
	2
	3
	4
	5

with 5 spaces which can contain string values.

When the array is populated, we could visualize the following

	Bill
	Ben
	Fred
	Mary
	Jane

In the first view, the numbers are the array’s index numbers which are used to identify a particular element. The second refers to the values actually contained in the array.

To allocate a value to a location in array, it is simply necessary to reference the index number and set that equal to the value required. For example:

strArray(3) = “Fred”

…would be the code used to set the value of the array’s third element to the string value “Fred”.

Arrays with Multiple Dimensions

Arrays can have more than one index number; that is they can have more than one dimension. Typically we will use 2 dimensional arrays which are in effect virtual tables.

The following code

Dim strArray(1 to 5,1 to 3)

….creates the following

	1,1
	1,2
	1,3

	2,1
	2,2
	2,3

	3,1
	3,2
	3,3

	4,1
	4,2
	4,3

	5,1
	5,2
	5,3

This is an array with 5 rows and 3 columns. If we wanted to set the value of the last element in the array to the word “hello”, we would need;

StrArray(5,3) = “Hello”

While single and two dimensional arrays are the most commonly used; arrays can have up to 60 dimensions.

Thus the following

StrArray(1 to 3,1 to 9,1 to 6)

….defines a virtual cube containing 162 spaces.

Once we exceed 3 dimensions, mathematically we are working with hypercubes which are hard to visualize! Fortunately, it is unlikely that you will ever need them.

A word about index numbers

Thus far we have explicitly specified the index numbers in an array as follows;

Dim intArray(1 to 4) as integer

…..which specifies that the first location is numbered 1 and the last 4.

We could however define the array as follows

Dim intArray(4) as integer

Here we have again defined an array with 4 locations. However, under normal circumstances the index numbers would be;

	0
	1
	2
	3

With the first index number starting zero.

This can be changed by using the Option Base statement in the declarations section of the module containing the code

Option Base 1

…..sets the lower bound index of any array to 1.

It is however better practice to explicitly specify the lower bound index number in the array’s declaration.

Ubound and Lbound

The Ubound and Lbound functions return the highest and lowest index numbers in the array. They are useful when cycling through the values contained in an array.

The following code uses the Lbound and Ubound functions to view each item contained in an array

Public Sub Array1()

 Dim data(1 To 10) As Integer

 Dim I As Integer

 For I = LBound(data) To UBound(data)

 MsgBox data(I)

 Next I

End Sub
Saving arrays in names

As with any variable the array has a limited lifetime which terminates at the latest when the application ceases to run. However, in the same way that we can give a range a name that is saved within the workbook we can also name an array.
This array will then be saved with the workbook and can then be available when the workbook opens.

The following code creates an array, populates it and then saves it to a name; using the add method of the names collection.

This technique allows large volumes of data to be stored in a workbook, outside of the standard worksheets.

Public Sub ArrayToName()

 Dim MyArray(1 To 200, 1 To 3) As Integer

 Dim I As Integer

 Dim J As Integer

 For I = 1 To 200

 For J = 1 To 3

 MyArray(I, J) = I + J

 Next J

 Next I

 Names.Add Name:="MyName", RefersTo:=MyArray

End Sub

Charts

Creating charts from worksheet data

Charts are created by working with the chart object. The key elements to a chart are:
· Data source

· Type

· Location
These are controlled by the following properties.
Key Properties and methods of the chart object

	Properties/Methods
	Description

	SetSourceData
	This specifies the data that will be modelled in the chart. Includes 2 key arguments; Source which specifies the data range, and PlotBy which determines if the series is in rows or columns

	ChartType
	Select one from a list of chart types recognized by Excel

	Location
	Specifies if the chart is to be embedded into a worksheet or whether it will occupy a sheet of its own

	Add
	Adds a new chart to the active workbook

The following code example creates a simple chart object and then sets the above properties.
Public Sub EmbeddedChart()

 Set aChart = Charts.Add

 Set aChart = aChart.Location(Where:=xlLocationAsObject, Name:="Sheet1")

 With aChart

.ChartType = xl3DBarClustered

 .SetSourceData Source:=Sheets("Sheet1").Range("B2:E6"), PlotBy:=xlRows

.HasTitle = True

 .
ChartTitle.Text = "Sales Summary"

 End With

End Sub

Creating Charts from Arrays

In the example above, the chart’s source data was to be found in sheet1 range B2:E6 of the active workbook. It is however possible to set a chart’s source data to the contents of an array.
Public Sub ChartFromArray()

 Dim SourceRange As Range

 Dim aWorksheet As Worksheet

 Dim aWorkBook As Workbook

 Dim aChart As Chart

 Dim aNewSeries As Series

 Dim intCount As Integer

 Dim SalesArray As Variant

 Dim MonthArray As Variant

 MonthArray = Array("Jan", "Feb", "March")

 Set SourceRange = Sheets("Source Sheet").Range("B2:E6")

 Set aWorkBook = Workbooks.Add

 Set aWorksheet = aWorkBook.Worksheets(1)

 Set aChart = aWorkBook.Charts.Add

 With aChart

 For intCount = 1 To 4

 'create a new series

 Set aNewSeries = .SeriesCollection.NewSeries

 SalesArray = SourceRange.Offset(intCount, 1).Resize(1, 3).Value

 aNewSeries.Values = SalesArray

 aNewSeries.XValues = MonthArray

 Next intCount

 .HasLegend = True

 .HasTitle = True

 .ChartTitle.Text = "First Quarter Sales"

 End With
The above code creates a new workbook, adds a chart and then populates the chart with data taken from a source workbook.

Within the For...Next loop, four new series are created. At each loop a new series is created with the “NewSeries” method. The appropriate row’s data is then assigned directly to the variant “SalesArray”, and sales array is assigned to the values property of the new series.
Active X Data Objects
Microsoft's ActiveX Data Objects (ADO) is a set of objects for accessing data sources. It provides a layer between VBA and the OLE DB, for example an Access Database.

ADO allows a developer to write programs that access data without knowing how the database is implemented. You must be aware of your database for connection only. No knowledge of SQL is required to access a database when using ADO, although you can use ADO to execute arbitrary SQL commands.
Key Objects

There are two key objects that concern us; the Connection Object and the Recordset Object.

The Connection Object is the link between your Excel Spreadsheet and the database itself. The link must be opened initially, it must be closed when you're finished, and it has varying qualities. These qualities are the properties and methods of the Connection Object.
The Recordset is the object you're going to be doing almost all of your work with. A RecordSet object is a container for what is called a Cursor. A cursor is a temporary table, which is constructed by performing a query on a table in a database. It doesn't exist in a file; it exists in memory, but other than that, it has all the characteristics of a database table. It has rows (records) and columns (fields), and the rows and columns have properties of their own.
The Connection Object

The connection object has a child object known as the connection string. The connection string provides the path to the database, together with additional information concerning the database’s properties.

The following code creates a constant to take the required connection string. It then creates an ADODB connection object and then sets that object’s connection string to the defined constant. The connection is then opened, using the connection string’s open method.

Const ConnString = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=D:\Documents and Settings\Storage\Work\Access\Simulated Server\Northwind 2003v2.mdb;Persist Security Info=False"
Dim Connection As ADODB.Connection
Connection.ConnectionString = ConnString
Connection.Open

The RecordSet Object

The RecordSet Object is used to represent a table or query in the database defined by the connection string. An object variable is defined as an ADODB RecordSet and is then set to the required table using an SQL statement.

The Recordset can then be manipulated with the following methods and properties.

	MoveFirst
	Move to first record

	MoveNext
	Move to next Record

	MovePrevious
	Move to previous Record

	MoveLast
	Move to last Record

	Edit
	Edit current record

	AddNew
	Add new record

	Update
	Update changes

	Fields()
	Used to specify a particular field in the current record either by index number or name

	EOF
	Specifies whether the cursor is at the end of the file

	BOF
	Specifies that the cursor is at the beginning of the file

The following code follows on from that shown for the connection object it opens the customer’s table as a RecordSet, moves to the first record and then cycles through to the end of the file, writing the customer name to a cell in the active worksheet.

Const SQL = "SELECT * FROM customers"
Set rstCustomer = Connection.Execute(SQL)
With rstCustomer

 .MoveFirst

Sheets(1).Range(“a1”).select

 Do While Not .EOF

 Activecell.value = .Fields("CompanyName")

 .MoveNext

Activecell.Offset(1,0).Select
 Loop
End with

A word about the connection string

The connection string can often be difficult to code correctly. Fortunately there exists a simple technique to define the string, which involves creating a GUI tool that allows you to browse for the source file and then automatically calculate the connection string.

Create an empty text file and save it with the extension .udl. It will then open as a dialog box.

[image: image3.png]B Data Link Properties

Provider | Connctn | Advarced | A1 |

Selectthe data you want to comnect to

OLE DB Provider(s]

Microsaft Ofice 12.0 Access Database Engne OLE DB Provide
Mictosaft OLE DB Provider for Anapsis Services 9.0
Microsaft OLE DB Provider Far Data Mining Services
Microsaft OLE DB Provider forIndesing Service.
Mictosaft OLE DB Provider for Inernet Publishing
Microsaft OLE DB Provider for ODBC Diivers
Microsaft OLE DB Provider for OLAP Services 8.0
Microsaft OLE DB Provider for Oracle

Microsaft OLE DB Provider for Search

Mictosoft OLE DB Provider for ST Server

Mictosaft OLE DB Simple Provider

MSDataShape

(OLE DB Provider for Mictosolt Diestary Services
SGL Native Client

<

 On the provider tab select the appropriate OLE DB Provider.

On the connection tab, click the browse button and select the required database

[image: image4.png]B Data Link Properties

Provider Coecton | Advnced | Al |

Speciy the fllowing to connect to Access deta

1. Select o enter database name:

huind

2 Enterinformation tolog on 1o the database:

User pame:

[Admin

¥ Blank passward [Allow saving password

Then close the dialog box and open the file using notepad. Within the file you will see the connection string clearly labeled.

[image: image5.png]

You can the copy and paste the code into your procedure.

Class Modules

What can be done with Class Modules?
Class modules allow you to create and use your own object types in your application. This implies the following;
· You can easily write code that works with any workbooks that do not have any code.

· Two or more procedures for the event of a command button can be consolidated in one

· The code is easy to use by concealing logic and data.

Why use Class Modules?
Classes make your code:
· Development simpler

· More manageable

· Self-documenting

· Easier to maintain

What is a Class?

A Class is a Blueprint or template of an Object.
In Excel VBA, an Object can mean Workbooks, Worksheets, User forms and Controls etc. Normally an Object has Properties or Methods. A Property stands for Data that describes the Object, and a Method stands for an action that can be ordered to the object.
Properties and Methods of the Object depend on the kind of Object.

For Example;
Worksheet (1).Select
... selects the first worksheet in the workbook. Select is a method of the worksheet object.
How Does a Class Module Work?
A Class Module is a place where a Class is defined. The procedures in a class module are never called directly from other modules like the procedures placed in the standard modules.
In the view of a standard module, the class module doesn't exist.
The thing that exists in the view of a standard module is an instance of the object generated by the class defined by the class module. The methods and procedures of the class are defined within the class module.
Key Elements in a class module
The class module defines all the properties and methods associated with the class. In the example below the “customer” class has two properties associated properties; Name and Main Address.
These are defined by the Property Get and Property let Procedures (see below).
The Customer ID is calculated by taking the leftmost 3 characters from the customer’s Name and concatenating that with the 5 leftmost characters from the main Address. This is the result of the method GetCustomerID, and is defined in a function in the class module
Property Get and Let Procedures
A property is implemented using a property let and a property get procedure. When someone sets a value for a property the property let procedure is called with the new value. When someone reads the value of a property the property get procedure is called to return the value. The value is stored as an internal private variable.

Read only properties can be created by implementing a property get procedure without a corresponding property let procedure.

Example of a Class Module
Option Explicit
Private strName As String
Private strAddress As String

Public Property Get Name() As String

 Name = strName

End Property

Public Property Let Name(ByVal value As String)

 strName = value

End Property

Public Function GetCustomerID()

 GetCustomerID = Left(strName, 3) & Left(strAddress, 5)

End Function

Public Property Get MainAddress() As String

 MainAddress = strAddress

End Property

Public Property Let MainAddress(ByVal value As String)

 strAddress = value

End Property

Referring to user defined Objects in Code
This simply involves creating an instance of the Class in Code and then manipulating it is the way you would any other object.
The following code would be placed in a standard module, and refers to the customer object defined previously.

Option Explicit

Dim aCustomer As Customer (1)

Sub TestCustomer()

 Set aCustomer = New Customer (2)

 aCustomer.Name = "Evil Genius" (3)

 aCustomer.MainAddress = "123 the Hollowed out Volcano" (4)

 MsgBox "Company ID is " & vbCrLf & aCustomer.GetCustomerID() (5)

End Sub

Line 1 defines an object variable as a Customer variable, and line 2 sets it as a new customer object. Line 3 assigns a value to its name property and line 4 a value to its Main Address property.
Line 4 uses the GetCustomerID Method to generate the CustomerID value and returns it in a message box.

Using IntelliSense™
Microsoft IntelliSense is a convenient way to access descriptions of objects and methods. It speeds up software development by reducing the amount of name memorization needed and keyboard input required. Once a class is defined in a class module, Intellisense will automatically provide drop down lists showing the methods and properties of objects the names of which have been entered into the VBE.

[image: image6.png]Microsoft Visual Basic - Class Modules 2.xism [design] - [Module1 (Code)]

& File Edit

HE=ME I - A =

Project - VBAProject x|

ew Insert Fomat Debug Run Tools AddIns Window Help Type aquestionforhely = = @ X

@

[iGenera Festcustomer

Ln13, Col15

Option Explicit

=il ——
] 3 ¥BAProject (Class Modules 2.xlsm)
55 Microsoft Excel Objcts

Sheet (sheet)

Sheet (shect?)

Sheet (Shect)

48] Thsworkbook

Dim aCustomer ks Customer
Dim theCustomers is New Customers

Const ConnString = "Provider=Nicrosoft.Jet.OLEDB.4.0;Data Source:
Dim rstCustomer Ls ADODE.Recordset

Const SQL = "SELECT * FROM customers”

\Docunents and Settings\StoragelWork)Aecess)Simul

=5 Modules
2 Module1 Sub TestCustomwer ()

55 Clas Modles
@ Customer Set aCustomer = New Customer

@ Customers
acustomer..|

S BaiCsiomain
o ManAddress
& Name

TestCustomerCollection(]

Dim Connection is LDODE.Connection
Set Connection = New ADODE.Connection
Connection.ConnectionString = ConnString
Connection.Open

Set rstCustomer = Connection.Execute (SOL)

Dim 1 ks Long
For 1 = theCustomers.Count To 1 Step -1

Properties - Modulel

Modulel Macule =

Call theCustomers.Remove (i)
habei | cotegoried |
=T

Next 1

With rstCustomer

Working with Collections
A class is a blueprint for an object, and individual objects are “instances” of a class. A collection is simply a group of individual objects with which we are going to work.
For example in the code above we have defined a class called customers, and code to generate a single instance of that class; i.e. one individual customer. In practice we will be working with more than one customer and we will wish to define them as being part of a collection object so we can process them using some of the methods and properties of the collection object.

The Collection Object

The collection object has a number of properties and methods associated with it; of which the most important are:
	Method/Property
	Description

	Count
	A method that returns the number of objects in the collection

	Add
	A method that adds an item to the collection

	Remove
	Removes an item to a collection

	Items(index)
	Refers to an individual item in the collection either by its index number (position in collection) or by its name

Explicit creation of a collection
We can create a collection in a class module. This simply requires us to define the collections objects and methods in the normal way

Option Explicit

Private FCustomers As New Collection

Public Function add(ByVal value As Customer)

 Call FCustomers.add(value, value.Name)

End Function

Public Property Get Count() As Long

 Count = FCustomers.Count

End Property

Public Property Get Items() As Collection

 Set Items = FCustomers

End Property

Public Property Get Item(ByVal value As Variant) As Customer

 Set Item = FCustomers(value)

End Property

Public Sub Remove(ByVal value As Variant)

 Call FCustomers.Remove(value)

End Sub

The above code simply defines a collection called customers (class module name). The variable FCustomers is defined as a collection object. The various methods and properties are then defined. For example, the remove method is defined in a procedure that uses the remove method of the collection object to remove a specified item from the collection.

Referring to a collection in a standard module

Once defined, a collection can be employed in the same way as any other collection.
Dim aCustomer As Customer

Dim theCustomers As New Customers

 Set aCustomer = New Customer

 aCustomer.Name = "Kur Avon"

 aCustomer.MainAddress = "132 Long Lane"

 Call theCustomers.add(aCustomer)

 Set aCustomer = New Customer

 aCustomer.Name = "Fred Perry"

 aCustomer.MainAddress = "133 Long Lane"

 Call theCustomers.add(aCustomer)

 Set aCustomer = New Customer

 aCustomer.Name = "Jo Bloggs"

 aCustomer.MainAddress = "134 Long Lane"

 Call theCustomers.add(aCustomer)

For Each aCustomer In theCustomers.Items

 Sheets(1).Range("A1").Select

 ActiveCell.value = aCustomer.Name

 ActiveCell.Offset(0, 1).value = aCustomer.MainAddress

 ActiveCell.Offset(1, 0).Select

 Next aCustomer

The above code simply defines a “customer” variable and a “customers” variable; assigns three objects to the collection and then writes the name and address to a worksheet in the current workbook, using a “FOR EACH” loop.

Using the Collections Object Directly

It is possible to create a collection using the VBA collection class directly. The code below creates a collection called employees and assigns three instances of the custom object employees to it.
Sub TestEmployeesCollection()

 Dim anEmployee As Employee

 Dim i As Long

 Set anEmployee = New Employee

 anEmployee.Name = "Stephen Williams"

 anEmployee.Rate = 500

 anEmployee.HoursPerWeek = 50

 Call Employees.add(anEmployee, anEmployee.Name)

 Set anEmployee = New Employee

 anEmployee.Name = "Kur Avon"

 anEmployee.Rate = 50

 anEmployee.HoursPerWeek = 50

 Call Employees.add(anEmployee, anEmployee.Name)

 Set anEmployee = New Employee

 anEmployee.Name = "Bill Bailey"

 anEmployee.Rate = 250

 anEmployee.HoursPerWeek = 50

 Call Employees.add(anEmployee, anEmployee.Name)

 Set anEmployee = New Employee

 anEmployee.Name = "Alexander Armstrong"

 anEmployee.Rate = 250

 anEmployee.HoursPerWeek = 50

 Call Employees.add(anEmployee, anEmployee.Name)

 For Each anEmployee In Employees

 MsgBox anEmployee.Name & " Earns " & "£" & anEmployee.GetGrossWeeklyPay()

 Next anEmployee

End Sub
Programming Techniques
Writing effective code is both a science and an art. There are obviously rules of logic and syntax that define what will and will not work. Outside of this however, there are usually a multiplicity of ways to achieve a particular end, and as your experience grows you will find a style that suits you. However there are various conventions and best practises that when followed will make your code simpler and more efficient.

Best Practice for Excel Programming

When writing VBA code for Excel, it is best whenever possible to make use of Excel’s built in functionality rather than trying to replicate it in your code. For example, if you were working with a list and wanted to place subtotal within it at the end of various groups, you could:

1. Write code that inserts a blank row at the end of each group and then insert a function to total the rows above it.
2. Alternatively, you could use the subtotalling method of the current region to accomplish the same end.

The later technique is the more efficient as it is briefer, easier to understand and executes more quickly. There are also associated methods for removing the subtotals.
Sub SubTotals()

 Range("A6").CurrentRegion.Sort key1:=Range("a7:a41"), Header:=xlYes

 Range("A6").CurrentRegion.Subtotal Groupby:=1, Function:=xlSum, _ TotalList:=Array(6, 11, 16)

End Sub
The code above sorts a database, and then inserts subtotals based on the sorted column.

Using Worksheet Functions

Most Excel functions are accessible from the worksheet function object. Those available are listed below.
Acos

Acosh

And

Asc

Asin

Asinh

Atan2

Atanh

AveDev

Average

BahtText

BetaDist

BetaInv

BinomDist

Ceiling

ChiDist

ChiInv

ChiTest

Choose

Clean

Combin

Confidence

Correl

Cosh

Count

CountA

CountBlank

CountIf

Covar

CritBinom

DAverage

Days360

Db

DCount

DCountA

Ddb

Degrees

DevSq

DGet

DMax

DMin

Dollar

DProduct

DStDev

DStDevP

DSum

DVar

DVarP

Even

ExponDist

Fact

FDist

Find

FindB

FInv

Fisher

FisherInv

Fixed

Floor

Forecast

Frequency

FTest

Fv

GammaDist

GammaInv

GammaLn

GeoMean

Growth

HarMean

HLookup

HypGeomDist

Index

Intercept

Ipmt

Irr

IsErr

IsError

IsLogical

IsNA

IsNonText

IsNumber

Ispmt

IsText

Kurt

Large

LinEst

Ln

Log

Log10

LogEst

LogInv

LogNormDist

Lookup

Match

Max

MDeterm

Median

Min

MInverse

MIrr

MMult

Mode

NegBinomDist

NormDist

NormInv

NormSDist

NormSInv

NPer

Npv

Odd

Or

Pearson

Percentile

PercentRank

Permut

Phonetic

Pi

Pmt

Poisson

Power

Ppmt

Prob

Product

Proper

Pv

Quartile

Radians

Rank

Rate

Replace

ReplaceB

Rept

Roman

Round

RoundDown

RoundUp

RSq

RTD

Search

SearchB

Sinh

Skew

Sln

Slope

Small

Standardize

StDev

StDevP

StEyx

Substitute

Subtotal

Sum

SumIf

SumProduct

SumSq

SumX2MY2

SumX2PY2

SumXMY2

Syd

Tanh

TDist

Text

TInv

Transpose

Trend

Trim

TrimMean

TTest

USDollar

Var

VarP

Vdb

VLookup

Weekday

Weibull

ZTest
The Worksheet Function is a member of the application object and the general syntax for accessing it is as follows
Application.WorkshheetFunction.KeyWord(Argument1, Argument2,Argumentn)

The following code inserts the total of a column of numbers using the sum function.

Sub Totals()

 Range("B45").Value = Application.WorksheetFunction.Sum(Range("B7:B42"))

End Sub
A Word about VB functions

Many of the Excel functions not accessible from the Worksheet function object are available as VB functions. For example the Left function can be employed as follows

Sub LeftFunction()

 Dim strInitial As String

 strInitial = Left(Range("A50"), 1)

 MsgBox strInitial

End Sub
A complete list of VB functions is too large to present here.
ASCII Codes

The American Standard Code for Information Interchange is a character encoding scheme. The codes can be used directly in VBA for a variety of purposes.

Inserting non printable characters into literal strings

For instance the following inserts a line feed into the text string

strTitle = “Sales For “ & chr(10) & “Northern Region”

It can also be used for foreign letters. The following inserts the French Accented letter ḉ

Range("A1").Value = Chr(231)
Controlling data entry into text boxes and other form controls.

Text, combo and list boxes recognize the “Key Down” event. This event fires whenever a key is pressed, but before the text appears in the control. It can therefore be used for data validation purposes. The following snippet of code prevents the user from entering anything into the control other than the letters 0 to 9 (It also allows backspacing and tabbing)
Private Sub TextBox1_KeyDown(ByVal KeyCode As MSForms.ReturnInteger, ByVal Shift As Integer)

 If (KeyCode < 48 Or KeyCode > 57) And KeyCode <> 8 And KeyCode <> 9 Then

 KeyCode = 0

 Beep

 End If

End Sub
The keyCode argument is the ascii code returned by the pressed key. If the keyCode is not valid it resets the keyCode to 0 so returning the null character
A complete list of all standard ASCII codes is given below.

	EC
	OCT
	HEX
	BIN
	Symbol
	Description

	0
	000
	00
	00000000
	NUL
	Null char

	1
	001
	01
	00000001
	SOH
	Start of Heading

	2
	002
	02
	00000010
	STX
	Start of Text

	3
	003
	03
	00000011
	ETX
	End of Text

	4
	004
	04
	00000100
	EOT
	End of Transmission

	5
	005
	05
	00000101
	ENQ
	Enquiry

	6
	006
	06
	00000110
	ACK
	Acknowledgment

	7
	007
	07
	00000111
	BEL
	Bell

	8
	010
	08
	00001000
	BS
	Back Space

	9
	011
	09
	00001001
	HT
	Horizontal Tab

	10
	012
	0A
	00001010
	LF
	Line Feed

	11
	013
	0B
	00001011
	VT
	Vertical Tab

	12
	014
	0C
	00001100
	FF
	Form Feed

	13
	015
	0D
	00001101
	CR
	Carriage Return

	14
	016
	0E
	00001110
	SO
	Shift Out / X-On

	15
	017
	0F
	00001111
	SI
	Shift In / X-Off

	16
	020
	10
	00010000
	DLE
	Data Line Escape

	17
	021
	11
	00010001
	DC1
	Device Control 1 (oft. XON)

	18
	022
	12
	00010010
	DC2
	Device Control 2

	19
	023
	13
	00010011
	DC3
	Device Control 3 (oft. XOFF)

	20
	024
	14
	00010100
	DC4
	Device Control 4

	21
	025
	15
	00010101
	NAK
	Negative Acknowledgement

	22
	026
	16
	00010110
	SYN
	Synchronous Idle

	23
	027
	17
	00010111
	ETB
	End of Transmit Block

	24
	030
	18
	00011000
	CAN
	Cancel

	25
	031
	19
	00011001
	EM
	End of Medium

	26
	032
	1A
	00011010
	SUB
	Substitute

	27
	033
	1B
	00011011
	ESC
	Escape

	28
	034
	1C
	00011100
	FS
	File Separator

	29
	035
	1D
	00011101
	GS
	Group Separator

	30
	036
	1E
	00011110
	RS
	Record Separator

	31
	037
	1F
	00011111
	US
	Unit Separator

	
OCT
	HEX
	BIN
	Symbol
	HTML Number
	HTML Name
	Description

	32
	040
	20
	00100000
	
	
	Space

	33
	041
	21
	00100001
	!
	!
	Exclamation mark

	34
	042
	22
	00100010
	"
	"
	Double quotes (or speech marks)

	35
	043
	23
	00100011
	#
	#
	Number

	36
	044
	24
	00100100
	$
	$
	Dollar

	37
	045
	25
	00100101
	%
	%
	Procenttecken

	38
	046
	26
	00100110
	&
	&
	Ampersand

	39
	047
	27
	00100111
	'
	'
	Single quote

	40
	050
	28
	00101000
	(
	(
	Open parenthesis (or open bracket)

	41
	051
	29
	00101001
)
)
	Close parenthesis (or close bracket)

	42
	052
	2A
	00101010
	*
	*
	Asterisk

	43
	053
	2B
	00101011
	+
	+
	Plus

	44
	054
	2C
	00101100
	,
	,
	Comma

	45
	055
	2D
	00101101
	-
	-
	Hyphen

	46
	056
	2E
	00101110
	.
	.
	Period, dot or full stop

	47
	057
	2F
	00101111
	/
	/
	Slash or divide

	48
	060
	30
	00110000
	0
	0
	Zero

	49
	061
	31
	00110001
	1
	1
	One

	50
	062
	32
	00110010
	2
	2
	Two

	51
	063
	33
	00110011
	3
	3
	Three

	52
	064
	34
	00110100
	4
	4
	Four

	53
	065
	35
	00110101
	5
	5
	Five

	54
	066
	36
	00110110
	6
	6
	Six

	55
	067
	37
	00110111
	7
	7
	Seven

	56
	070
	38
	00111000
	8
	8
	Eight

	57
	071
	39
	00111001
	9
	9
	Nine

	58
	072
	3A
	00111010
	:
	:
	Colon

	59
	073
	3B
	00111011
	;
	;
	Semicolon

	60
	074
	3C
	00111100
	<
	<
	Less than (or open angled bracket)

	61
	075
	3D
	00111101
	=
	=
	Equals

	62
	076
	3E
	00111110
	>
	>
	Greater than

	63
	077
	3F
	00111111
	?
	?
	Question mark

	64
	100
	40
	01000000
	@
	@
	At symbol

	65
	101
	41
	01000001
	A
	A
	Uppercase A

	66
	102
	42
	01000010
	B
	B
	Uppercase B

	67
	103
	43
	01000011
	C
	C
	Uppercase C

	68
	104
	44
	01000100
	D
	D
	Uppercase D

	69
	105
	45
	01000101
	E
	E
	Uppercase E

	70
	106
	46
	01000110
	F
	F
	Uppercase F

	71
	107
	47
	01000111
	G
	G
	Uppercase G

	72
	110
	48
	01001000
	H
	H
	Uppercase H

	73
	111
	49
	01001001
	I
	I
	Uppercase I

	74
	112
	4A
	01001010
	J
	J
	Uppercase J

	75
	113
	4B
	01001011
	K
	K
	Uppercase K

	76
	114
	4C
	01001100
	L
	L
	Uppercase L

	77
	115
	4D
	01001101
	M
	M
	Uppercase M

	78
	116
	4E
	01001110
	N
	N
	Uppercase N

	79
	117
	4F
	01001111
	O
	O
	Uppercase O

	80
	120
	50
	01010000
	P
	P
	Uppercase P

	81
	121
	51
	01010001
	Q
	Q
	Uppercase Q

	82
	122
	52
	01010010
	R
	R
	Uppercase R

	83
	123
	53
	01010011
	S
	S
	Uppercase S

	84
	124
	54
	01010100
	T
	T
	Uppercase T

	85
	125
	55
	01010101
	U
	U
	Uppercase U

	86
	126
	56
	01010110
	V
	V
	Uppercase V

	87
	127
	57
	01010111
	W
	W
	Uppercase W

	88
	130
	58
	01011000
	X
	X
	Uppercase X

	89
	131
	59
	01011001
	Y
	Y
	Uppercase Y

	90
	132
	5A
	01011010
	Z
	Z
	Uppercase Z

	91
	133
	5B
	01011011
	[
	[
	Opening bracket

	92
	134
	5C
	01011100
	\
	\
	Backslash

	93
	135
	5D
	01011101
]
]
	Closing bracket

	94
	136
	5E
	01011110
	^
	^
	Caret – circumflex

	95
	137
	5F
	01011111
	_
	_
	Underscore

	96
	140
	60
	01100000
	`
	`
	Grave accent

	97
	141
	61
	01100001
	a
	a
	Lowercase a

	98
	142
	62
	01100010
	b
	b
	Lowercase b

	99
	143
	63
	01100011
	c
	c
	Lowercase c

	100
	144
	64
	01100100
	d
	d
	Lowercase d

	101
	145
	65
	01100101
	e
	e
	Lowercase e

	102
	146
	66
	01100110
	f
	f
	Lowercase f

	103
	147
	67
	01100111
	g
	g
	Lowercase g

	104
	150
	68
	01101000
	h
	h
	Lowercase h

	105
	151
	69
	01101001
	i
	i
	Lowercase i

	106
	152
	6A
	01101010
	j
	j
	Lowercase j

	107
	153
	6B
	01101011
	k
	k
	Lowercase k

	108
	154
	6C
	01101100
	l
	l
	Lowercase l

	109
	155
	6D
	01101101
	m
	m
	Lowercase m

	110
	156
	6E
	01101110
	n
	n
	Lowercase n

	111
	157
	6F
	01101111
	o
	o
	Lowercase o

	112
	160
	70
	01110000
	p
	p
	Lowercase p

	113
	161
	71
	01110001
	q
	q
	Lowercase q

	114
	162
	72
	01110010
	r
	r
	Lowercase r

	115
	163
	73
	01110011
	s
	s
	Lowercase s

	116
	164
	74
	01110100
	t
	t
	Lowercase t

	117
	165
	75
	01110101
	u
	u
	Lowercase u

	118
	166
	76
	01110110
	v
	v
	Lowercase v

	119
	167
	77
	01110111
	w
	w
	Lowercase w

	120
	170
	78
	01111000
	x
	x
	Lowercase x

	121
	171
	79
	01111001
	y
	y
	Lowercase y

	122
	172
	7A
	01111010
	z
	z
	Lowercase z

	123
	173
	7B
	01111011
	{
	{
	Opening brace

	124
	174
	7C
	01111100
	|
	|
	Vertical bar

	125
	175
	7D
	01111101
	}
	}
	Closing brace

	126
	176
	7E
	01111110
	~
	~
	Equivalency sign – tilde

	127
	177
	7F
	01111111
	
	
	Delete

	EC
	OCT
	HEX
	BIN
	Symbol
	Description

	128
	200
	80
	10000000
	€
	Euro sign

	129
	201
	81
	10000001
	
	

	130
	202
	82
	10000010
	‚
	Single low-9 quotation mark

	131
	203
	83
	10000011
	ƒ
	Latin small letter f with hook

	132
	204
	84
	10000100
	„
	Double low-9 quotation mark

	133
	205
	85
	10000101
	…
	Horizontal ellipsis

	134
	206
	86
	10000110
	†
	Dagger

	135
	207
	87
	10000111
	‡
	Double dagger

	136
	210
	88
	10001000
	ˆ
	Modifier letter circumflex accent

	137
	211
	89
	10001001
	‰
	Per mille sign

	138
	212
	8A
	10001010
	Š
	Latin capital letter S with caron

	139
	213
	8B
	10001011
	‹
	Single left-pointing angle quotation

	140
	214
	8C
	10001100
	Œ
	Latin capital ligature OE

	141
	215
	8D
	10001101
	
	

	142
	216
	8E
	10001110
	Ž
	Latin captial letter Z with caron

	143
	217
	8F
	10001111
	
	

	144
	220
	90
	10010000
	
	

	145
	221
	91
	10010001
	‘
	Left single quotation mark

	146
	222
	92
	10010010
	’
	Right single quotation mark

	147
	223
	93
	10010011
	“
	Left double quotation mark

	148
	224
	94
	10010100
	”
	Right double quotation mark

	149
	225
	95
	10010101
	•
	Bullet

	150
	226
	96
	10010110
	–
	En dash

	151
	227
	97
	10010111
	—
	Em dash

	152
	230
	98
	10011000
	˜
	Small tilde

	153
	231
	99
	10011001
	™
	Trade mark sign

	154
	232
	9A
	10011010
	š
	Latin small letter S with caron

	155
	233
	9B
	10011011
	›
	Single right-pointing angle quotation mark

	156
	234
	9C
	10011100
	œ
	Latin small ligature oe

	157
	235
	9D
	10011101
	
	

	158
	236
	9E
	10011110
	ž
	Latin small letter z with caron

	159
	237
	9F
	10011111
	Ÿ
	Latin capital letter Y with diaeresis

	160
	240
	A0
	10100000
	
	Non-breaking space

	161
	241
	A1
	10100001
	¡
	Inverted exclamation mark

	162
	242
	A2
	10100010
	¢
	Cent sign

	163
	243
	A3
	10100011
	£
	Pound sign

	164
	244
	A4
	10100100
	¤
	Currency sign

	165
	245
	A5
	10100101
	¥
	Yen sign

	166
	246
	A6
	10100110
	¦
	Pipe, Broken vertical bar

	167
	247
	A7
	10100111
	§
	Section sign

	168
	250
	A8
	10101000
	¨
	Spacing diaeresis – umlaut

	169
	251
	A9
	10101001
	©
	Copyright sign

	170
	252
	AA
	10101010
	ª
	Feminine ordinal indicator

	171
	253
	AB
	10101011
	«
	Left double angle quotes

	172
	254
	AC
	10101100
	¬
	Not sign

	173
	255
	AD
	10101101
	
	Soft hyphen

	174
	256
	AE
	10101110
	®
	Registered trade mark sign

	175
	257
	AF
	10101111
	¯
	Spacing macron – overline

	176
	260
	B0
	10110000
	°
	Degree sign

	177
	261
	B1
	10110001
	±
	Plus-or-minus sign

	178
	262
	B2
	10110010
	²
	Superscript two – squared

	179
	263
	B3
	10110011
	³
	Superscript three – cubed

	180
	264
	B4
	10110100
	´
	Acute accent - spacing acute

	181
	265
	B5
	10110101
	µ
	Micro sign

	182
	266
	B6
	10110110
	¶
	Pilcrow sign - paragraph sign

	183
	267
	B7
	10110111
	·
	Middle dot - Georgian comma

	184
	270
	B8
	10111000
	¸
	Spacing cedilla

	185
	271
	B9
	10111001
	¹
	Superscript one

	186
	272
	BA
	10111010
	º
	Masculine ordinal indicator

	187
	273
	BB
	10111011
	»
	Right double angle quotes

	188
	274
	BC
	10111100
	¼
	Fraction one quarter

	189
	275
	BD
	10111101
	½
	Fraction one half

	190
	276
	BE
	10111110
	¾
	Fraction three quarters

	191
	277
	BF
	10111111
	¿
	Inverted question mark

	192
	300
	C0
	11000000
	À
	Latin capital letter A with grave

	193
	301
	C1
	11000001
	Á
	Latin capital letter A with acute

	194
	302
	C2
	11000010
	Â
	Latin capital letter A with circumflex

	195
	303
	C3
	11000011
	Ã
	Latin capital letter A with tilde

	196
	304
	C4
	11000100
	Ä
	Latin capital letter A with diaeresis

	197
	305
	C5
	11000101
	Å
	Latin capital letter A with ring above

	198
	306
	C6
	11000110
	Æ
	Latin capital letter AE

	199
	307
	C7
	11000111
	Ç
	Latin capital letter C with cedilla

	200
	310
	C8
	11001000
	È
	Latin capital letter E with grave

	201
	311
	C9
	11001001
	É
	Latin capital letter E with acute

	202
	312
	CA
	11001010
	Ê
	Latin capital letter E with circumflex

	203
	313
	CB
	11001011
	Ë
	Latin capital letter E with diaeresis

	204
	314
	CC
	11001100
	Ì
	Latin capital letter I with grave

	205
	315
	CD
	11001101
	Í
	Latin capital letter I with acute

	206
	316
	CE
	11001110
	Î
	Latin capital letter I with circumflex

	207
	317
	CF
	11001111
	Ï
	Latin capital letter I with diaeresis

	208
	320
	D0
	11010000
	Ð
	Latin capital letter ETH

	209
	321
	D1
	11010001
	Ñ
	Latin capital letter N with tilde

	210
	322
	D2
	11010010
	Ò
	Latin capital letter O with grave

	211
	323
	D3
	11010011
	Ó
	Latin capital letter O with acute

	212
	324
	D4
	11010100
	Ô
	Latin capital letter O with circumflex

	213
	325
	D5
	11010101
	Õ
	Latin capital letter O with tilde

	214
	326
	D6
	11010110
	Ö
	Latin capital letter O with diaeresis

	215
	327
	D7
	11010111
	×
	Multiplication sign

	216
	330
	D8
	11011000
	Ø
	Latin capital letter O with slash

	217
	331
	D9
	11011001
	Ù
	Latin capital letter U with grave

	218
	332
	DA
	11011010
	Ú
	Latin capital letter U with acute

	219
	333
	DB
	11011011
	Û
	Latin capital letter U with circumflex

	220
	334
	DC
	11011100
	Ü
	Latin capital letter U with diaeresis

	221
	335
	DD
	11011101
	Ý
	Latin capital letter Y with acute

	222
	336
	DE
	11011110
	Þ
	Latin capital letter THORN

	223
	337
	DF
	11011111
	ß
	Latin small letter sharp s - ess-zed

	224
	340
	E0
	11100000
	à
	Latin small letter a with grave

	225
	341
	E1
	11100001
	á
	Latin small letter a with acute

	226
	342
	E2
	11100010
	â
	Latin small letter a with circumflex

	227
	343
	E3
	11100011
	ã
	Latin small letter a with tilde

	228
	344
	E4
	11100100
	ä
	Latin small letter a with diaeresis

	229
	345
	E5
	11100101
	å
	Latin small letter a with ring above

	230
	346
	E6
	11100110
	æ
	Latin small letter ae

	231
	347
	E7
	11100111
	ç
	Latin small letter c with cedilla

	232
	350
	E8
	11101000
	è
	Latin small letter e with grave

	233
	351
	E9
	11101001
	é
	Latin small letter e with acute

	234
	352
	EA
	11101010
	ê
	Latin small letter e with circumflex

	235
	353
	EB
	11101011
	ë
	Latin small letter e with diaeresis

	236
	354
	EC
	11101100
	ì
	Latin small letter i with grave

	237
	355
	ED
	11101101
	í
	Latin small letter i with acute

	238
	356
	EE
	11101110
	î
	Latin small letter i with circumflex

	239
	357
	EF
	11101111
	ï
	Latin small letter i with diaeresis

	240
	360
	F0
	11110000
	ð
	Latin small letter eth

	241
	361
	F1
	11110001
	ñ
	Latin small letter n with tilde

	242
	362
	F2
	11110010
	ò
	Latin small letter o with grave

	243
	363
	F3
	11110011
	ó
	Latin small letter o with acute

	244
	364
	F4
	11110100
	ô
	Latin small letter o with circumflex

	245
	365
	F5
	11110101
	õ
	Latin small letter o with tilde

	246
	366
	F6
	11110110
	ö
	Latin small letter o with diaeresis

	247
	367
	F7
	11110111
	÷
	Division sign

	248
	370
	F8
	11111000
	ø
	Latin small letter o with slash

	249
	371
	F9
	11111001
	ù
	Latin small letter u with grave

	250
	372
	FA
	11111010
	ú
	Latin small letter u with acute

	251
	373
	FB
	11111011
	û
	Latin small letter u with circumflex

	252
	374
	FC
	11111100
	ü
	Latin small letter u with diaeresis

	253
	375
	FD
	11111101
	ý
	Latin small letter y with acute

	254
	376
	FE
	11111110
	þ
	Latin small letter thorn

	255
	377
	FF
	11111111
	ÿ
	Latin small letter y with diaeresis

Creating ADDINS
When we create a customized function, that function will typically only be available within that workbook. To make the function available to all workbooks, we must create and then open an add in file.

1. Create all the required functions in a separate workbook. This workbook should contain no data as it is sole purpose is to hold the functions

2. The file should then be saved and the file type should be excel addin

3. It is then necessary to install the addin file. The method varies according to the Excel Version
4. 2003. Go to Tool-Addins and in the resulting dialog box simple tick the new addin file

[image: image7.png]7
At Click
ror Checking...

Type a question for help

Shered Workspace...
Share Workboo...
Brotection

Online Colaboration

Goal Seek.
Scenarios.

Formuls Auditing

B S N N N NS R E S e E S E Sl il knl

i« < »]\ Sheet1{ Sheet2 / Sheet3

etting Started v x

®|0|a

4 Gffice Online

* Connect to Mirosoft Office.
Online:

* Get thelatest news about using
Excel

* Automatically update this st
from the web.

More.

Search for:

Example: “Print more than one copy”

Open
Vacros
Analytcal otions ractice
PuotTablez
ProtTablez

25 More..

3 Creste s new workbook...

5. 2007/2010. Click on the office button/file tab, select Excel options and click on the addins command. Alongside manage click “go” and then select the required addin

[image: image8.png]e — ©-x
e / = o [E) I T
3 cogl| | Popular = i (& Fin -
= &y View and manage Microsoft Office add-ins. sert Detete Format R
25 Fro| | Formuias 3 o T G cear~ Brter~ select~
IR |
Save Name Location Type
= e
- oo —
e
2 _ Analysis ToolPak C\.ce\Officel 2\libran\Analysis\ANALYS32 XL Excel Add-in
4] Custom XML Data. C\..es\Microsoft Office\Office1 2\OFFRHD.DLL Document Inspector
5 Resources Euro Currency Tools. C\... Office\Office12\Library\ EUROTOOLXLAM Excel Add-in.
7] Hidden Worksheets C\..es\Microsoft Office\Officel A0FFRHD.DLL Document Inspector
Hl Microsoft Actions Pane 3. XML Expansion Pack
:
= e -
=] 'No Document Related Ad-ins
:
- R I
= oo iosorl 3
7 Publisher: Microsoft Corporation
:
1]
2
2 — s
:
z
:
2

M 4> M| Sheetl, Sheet2 Sheet3 , ¥J =

© Best Training 2011
Printed on 100% Recycled paper
REV 01

